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Abstract

A frozen orbit is an orbit whose time rate of change of the argument of the

periapsis (-), the eccentricity (e), the semi major axis (a), or the angle of inclination (t) is

approximately equal to zero. Martian frozen orbits are known to exist for polar

trajectories with altitudes from 300 km to 1000 km. The objective of this study was to

determine if other regions with characteristics similar to the known frozen orbits exist,

taking into account the perturbative effects due to a 6 X 6 gravity field and atmospheric

drag.

First, the geopotential equation was derived for both spherical coordinates and the

classical orbital elements. Next, a model for the atmospheric drag was developed. Using

these two models, a Fortran computer model named ASAP (Artificial Satellite Analysis

Program) was analyzed for accuracy. This program proved to be highly reliable, and

was used to carry out further analysis.

Two of the three trajectories planned for the future Mars Geoscience/Climatology

Orbiter (MGCO) are frozen orbits. In order to determine the characteristics of -, e, a,

and i of a frozen orbit, one of the MGCO frozen orbits was examined in both a 6 X 0

and a 6 X 6 gravity field. The analysis showed that the above orbital elements are not

periodic over one orbital period (when in the presence of a 6 X 6 gravity field), but

they are bounded over one axial period. . -

Since the greatest change over an orbital period is in the argument of the periapsis

and the eccentricity the effect of driving the change in these two parameters to

approximately zero over one orbital period was investigated. Driving the change in , to

zero does not provide the desired level of control on the argument of the periapsis.

Driving the change in to zero can only be accomplished at the cost of relatively high

xvii
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rates of change in w over one orbital period. An orbit was found in which the change

in v and in e over one orbital period were both equal to approximately zero. Again the

argument of the periapsis is not bounded, but rather periodic.

A search for a combination of orbital elements which would yield a zero change

over one orbital period for all four of the above orbital elements was conducted for an

eccentricity of 0.3. The results showed no such orbit exist, regions were found in

which the change in 3 out of the 4 orbital elements were driven to zero o~r

approximately zero.

Finally, the predominant characteristics of the elements for the MGCO frozen orbit

are identified, and a region with these same characteristics was found.

x4
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FROZEN ORBIT ANALYSIS IN THE MARTIAN SYSTEM

°,,

1. Introduction

Background

Mars is the closest planet to Earth that is potentially habitable by man; however,

Mars is, at its closest approach to Earth, approximately 78 million kilometers away.

Even though the trip to Mars is made along keplerian trajectories which take advantage

of the Sun's gravity, fuel is still consumed in trajectory correction maneuvers. When a

probe arrives at Mars, fuel will again be required to establish, and maintain an orbit

about the planet. The size of the probe that can be sent to Mars is dependent on the

size of the booster used to get the probe out of the Earth's gravity field. Mission

planners must make use of boosters currently available because both budget and time

constraints do not allow for a booster to be designed for a specific mission. Therefore,

Nthe size of the payload is itself a constraint, part of which is taken up in mission

-2 required fuel. If the mission profile is such that the fuel required is minimized, then

the mission duration can be increased. Having the capability to maintain probes in orbit

about Mars for long periods will increase our knowledge of Mars' surface, climatology,

gravity field, magnetic field, and the interaction of the magnetic field with the solar

wind. Such a probe could also be used to better determine what and where Mars'

resources are, a factor that may be critical to future manned missions to the planet.

One method of minimizing fuel is to select an orbit that takes advantage of Mars'

gravity field in such a way as to minimize the effects of atmospheric drag upon the

probe. In the 1960's H. W. West, R. T. Clapp, and H. Small were able to show that for

Earth there exist a class of polar orbits with non zero eccentricity, and whose argument

of the periapsis is over the south pole, such that the line of apsides does not rotate, but

,4,, rather oscillates about its initial position. These orbits were called "frozen" because of

52l.



the off setting effects of the odd and even zonal harmonics on the eccentricity and the

argument of the periapsis yielding orbits whose shape, and whose orientation of the line

of apsides is nearly constant over time (17:2). Since most planets are oblate, and since

atmospheric drag is a function of altitude above the planet, the amount of atmospheric

drag experienced will be less over the poles. This implies that a probe in an orbit that

maintains its periapsis over a polar region will experience less drag, and hence require

less fuel consumption to remain in orbit. For Mars, frozen orbits are known to exist for

polar, or near polar orbits with altitudes from 300 to 1000 km (17:2).

Definition of a Frozen Orbit

This thesis defines a frozen orbit as any orbit whose time rate of change of the

argument of the periapsis (w), the eccentricity (e), the semi major axis (a), or the angle

of inclination (i) is equal to approximately zero.

Obiective

Given the perturbing effects of the zonal and sectoral harmonics up to and

including an order of six, and the perturbing effects of atmospheric drag, this thesis

seeks to determine other regions where orbital stabilities similar to the polar frozen

orbits may exist.

Methodology

First, in order to understand the relationship that exist between the orbital

elements for a frozen orbit, a known Martian frozen orbit will be examined. From the

understanding of the sensitivities of this orbit to changes in the orbital elements,

manipulations of the orbital elements will be made in an effort to find other stable

regions. This thesis will only consider the perturbing effects due to the geopotential and

atmospheric drag upon orbits with altitudes from approximately 200 km to 20,000 km

(Martian geosynchronous). Resonance effects will not be considered, nor will the effects

due to solar pressure or third bodies.

"VL"



11. The GeoDotential

Although the derivations in this section already exist in the literature, in the

interest of completeness they are presented in this chapter.

Derivation of the Geopotential Equation

Sir Isaac Newton showed that in inertial space the gravitational force of attraction

between two bodies can be written as:

F G AI. (2.1)

Newton also demonstrated that for a spherical body with a homogenous distribution

of mass, the entire mass of the primary body acts as if its mass existed as a point

particle located at the center of its sphere. If a planet is not perfectly spherical, and/or

does not have a homogenous distribution of mass, then these irregularities will effect the

motion of satellite about that planet. The acceleration which a satellite experiences (due

to the mass of the primary body) can be written as (19:49):

a 71(., y, z (2.2)

The L',x.y. term in equation (2.2) can be solved using a special form of Poisson's

Equation that is known as Laplace's Equation (the derivation of these equations is found

in Appendix A) which in cartesian coordinates is:

-121- - 0 (2.3)

The equations of motion of a satellite in orbit around a planet are simpler if

expressed in spherical polar coordinates, hence, equation (2.3) becomes (10:3):

A3

eqIt i
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)S 0 + _ i 1 2 1 (2.4)I a(r~l)I _____ a1_

r ~ 3rOS a r- 0)- r Co 2

where r = radial distance from the center of the attracting body to the satellite

= the latitude

= the longitude

Equation (2.4) is a linear partial differential equation whose solution takes the form

of (10:4):

I r,¢.A = R r (V 0 1.1 k (2.5)

Because L r.o.A describes a smooth sphere certain boundary conditions must be

imposed upon equation (2.5). First, in order to prevent a jump discontinuity in the

function it must have the same value at i : and .1 2,. Second, to prevent

.-.. discontinuities at the poles of the sphere, the first derivative of •' with respect to 0 must

equal zero when ever the latitude is equal to odd multiples of ,f/2.

Substitution of equation (2.5) into equation (2.4) yields:

Ia r a R r ( 1 A 1 2 1 cos€ a (2.6)

rar ar r2cosoao q5 r '

a 2

r 2 cos
2 oa A 

2 (R r ) .l A i= 0

The right hand side (RHS) of the equation (2.6) can be written in terms of A alone as:

Cori (htR (Cos 2 d d4e) I 12(7
Rdr~dr) 95 d_ y o I= d-_-

Since the LHS and the RHS of equation (2.7) are independent, set them equal to

the constant A. Hence equation (2.7) implies:

A.

4



,. , - . .- -. .. - i -. . , - , -W ,ry rr .,r nr -tW". r' ,w ... - _ tl7 - - . . .,' - ,w-

(2 (2.8)

-,. 
dp (IA2 K-.l= 0

The solution to equation (2.8) has the form:

.1 Ccos ,k; 1 2AX +SsinrA.I/2x (2.9)

where, in addition to k being a constant, c and s are also constants. Further, unlike the

constants c and S, k can not be an arbitrary value. The first boundary condition in

equation (2.5) implies that ,k must be equal to a positive integer. Let this integer be ..

Hence the general solution to equation (2.8) has the form:

.1' A = Cmcosr)+L mSinmA (2.10)

To obtain the next expression, set the LHS of equation (2.7) equal to k yielding:

(I r dR r 2  1 d f dO) (2.11)

Rcdr\\dr ) coS'r 0tcos 0do do)

Again the LHS and the RHS are independent of each other; therefore, equate both sides

N; to a constant, denoted by T. Hence:

4 r d T (2.12)
Rr dr)

which implies

I d ( d ) ( M 
2  7(2.1_3)

co.;O o cos2o o

Here the second boundary condition in equation (2.5) imposes the already mentioned

conditional values of '01do.

'SI *l Now let -sin, which implies d,-- From this the mathematical operator:

5
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d()o s dO( (2.14)
(10 d.\"

is derived. Applying this operator to equation (2.13) yields:

dmO _-.z  (2.15)
cos 2  - - T) 0

dV2 Cos 2 o

Therefore, equation (2.15) becomes:

. -x.- d20 _ ( m 2  T 0 (2.16)

- dx " 2  _.2

Equation (2.16) is the algebraic form known in the literature as Ferrier's form of

Legendre's Associated Equation whose solution has the form (1:160-162):

P x,= l' -. \2/2 dm  (2.17)

* dx'

When - ,no equation (2.17) becomes:

P 'n(sin 0' CO 2 tm
2  d P LsinO) (2.18)

L2 dxm

where (1:132)

Pdsin L  L (2.19)
2 Ldtsino I

In equations (2.17) and (2.18), m is any non negative integer, and L is an integer value

which is the number of times P,1 sinol passes through zero as o varies from 0 to ri (4:57).

Equations (2.18) and (2.19) are Rodrigues formulas giving a representation of the

% Legendre polynomials. An alternate expression for the Legendre polynomials is (1:132):

6



I 'j2 - k 2L -2k- 1 2k (2.20)
" % ~~~P t \v=' .k

A2- I L-A't L-2k:

where is the integer part of L/2.

Hence a solution to equation (2.13) is:

,

(,P 0: P' sin ¢ (2.21)

In order to find the last expression recall equation (2.12) written as:

d(r 2 d R (2.22)
'.-" -- I- =RT

V

* Returning to equation (2.16), it can be seen that this equation has the general form

of Legendre's Associated Equation (1:160):

I ~2..2 Y.+L~L+1> n~ 0 (2.23)."V 1-,2y -2.,-,+ L( L+ I! y_,. 0,

This implies:

T= L L+ 1 (2.24)

, Equation (2.22) becomes:

dr 2 dR) = R L L + 1(2.25)
dr Kdr

Nowk, let R = r'. Then equation (2.25) produces:

.p' p+ I rP=roL L+ I (2.26)

Because ,..A decreases with increasing distance, equation (2.26) implies:

' p =-L 1 (2.27)

.--

7
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therefore:

R r =r- (2.28)

Combining equations (2.10), (2.21), and (2.28) into equation (2.5) yields the desired

solution to equation (2.4). The results, equation (2.29), is the objective of this section

(19:55).

4 G.% G~A-r~ (2.29)V r, , .. . P sine' CLcosrn -, S,.sinm '

where R, = the equatorial radius of the primary body

= the universal gravity constant

= the distance from the center of the primary body to the satellite

The c_ and the s., terms in the above equation are constants that describe the

distribution of the primary body's mass, and are known in the literature as the primary

body's "gravity model". These terms are dimensionless since the dimensional units are

carried by the term c..

As an example of the effects of a primary body's shape and distribution of mass

upon its gravity field, an 18 by 18 gravity model for the planet Mars was input into

equation (2.29). The result was solved for values of latitude and longitude that

encompass the planet at an altitude of 500 km. (see the program Marsl in Appendix E)

The results are plotted in Figure 2.1. Note the checkerboard or "tesseral" pattern of

alternating regions of higher and lower geopotential than would exist if Mars were a

perfect, homogenous sphere.

8
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The Geopotential Equation as a Function of the Classical Qrbital Elements

Equation (2.29) is given in spherical polar coordinates. Since satellite motion is

often described in terms of the classical orbital elements, it is necessary to derive

equation (2.29) into a function of the classical orbital elements. This derivation is

structured on the work of Kaula, Born, and Hildebrand, see references 10 and 3.

Using equations (2.18) and (2.20) rewrite the P7(sins) term in the above equation to

yield:

"2. n/2 dr (2.30)

".*.' PL sinO = -sin ,n . sino"
'" dlsinO

* where

1/21!_ -'. '2L-2)! sin L-21 0 (2.31)
P, n t ,o 21 t!IL--t-(L--2tI'!

Combining equations (2.30) and (2.31):

* IL1/21 21-21! drsin L 2t (2.32)
P 'sino) = cos'- 2noo2Lt't - ti!(L - 2W d(sinO)'

-P.

Noting that (1:61)

d 0 Drnxa a 1 ar(2.33)

dx" f(a-rr+ I

Then

r' L / L - 2 t (2.34)

D n sin ,t FL-2t+1) -2t-r 'L . sin -rn2t (.
F'L-2t-m+ I L-2t - r

10
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Substituting equation (2.34) into equation (2.32), results in:

2 ' 2L-2t , S , 2_ (2.35)
Psi 0 ros, 0

2.o tI L-t I L-m-2t I

The upper limit of the summation changed from -L/2 due to the denominator term,

S-.-. . This term causes any value of t greater than 1-m /2 to make the factorial

negative, driving the factorial to infinity, and thus driving the summation to

zero.

* Let (10:6):

]"l tll'--- 2 -... . .. . . .. 6

2'ti,L-t I L-rn-2t

Then inserting equations (2.35) and (2.36) into equation (2.29) yields:

.CA! - ( r L -IL-m 12! (2.37)
r -Om'OZ T s i0

. X (C.cosmk + St.sin mA

In order to utilize Lagrange's Planetary Equations, equation (2.37) must be

rewritten in terms of the six orbital elements, a, , i, w, n, and v. Figure 2.2 shows the
r1

relationships between the various angles.

The A term will now be converted into the orbital elements. From Figure 2.2 it is

easily seen that k- ,-0 however, neither a nor 9 are members of the orbital element set.

Therefore, express as:

6 A = a- 0 - 0- ) = a-f [2-* (n.-80

where A the longitude of the projection of the secondary body onto the

primary body
SwS

Ir

- S

,% I
Sb

Sbi



the angle from the x axis of the inertial frame to the longitude of

the projection of the secondary body onto the primary body

= the angle from the x axis of the inertial frame to the prime

meridian of the primary body (also known as the "local sidereal

time")

I\

_-4-
'

.. 0

", Orientation of Satellite Orbit Plane (3:4)

-Fig:ure 2.2

,Applying equation (2.38) to the cosm,, and snrk terms of equation (2.37) yields:

o!;m. =cos M a-f- m f2-0 (2.39)

intiA -=sinr a-f) * 0-O (2.39a)

I
\ppl'ing equations (BI.) and (B.2), found in Appendix B to equations (2.39) and

(2 39a) ields:

N N~ . .. ..



o;rmzA= cos rr ai- 0 cosrn a- -srm a-D uimrr)-0 (2 40)

i'.i mrA = ;inor a-.0 co; in f0-O * cosrn a- ) sinr f)-O (2.40a)

Noting the angular relationships in Figure 2.2, and using the properties of spherical

trigonometry the following relationships are evident:

coaf) o-_w f (2.41)
•Cos. a - 0 cos W --

Cos 0

' ' "irl a -D 0 tanocott 2."("42)

sin_ = sin u, f f'sint (2.43)

Looking at the . f. .- n terms of equation (2.40) and applying equations (B2.5), (B2.7).

(2.41), and (2.42) yields:

rn)a") =R, 
(2.44)

-. a0-

R RE COSJ~ '--- 0 tan $ co t I

m cos' (A) + f si n' W k Cos' I
'.0 SCos' 0

I ie s:ire process applied to the sine terms of equations (2.40) yields:

J-- ';ri a-c) = R f S 1 (A f (2.45)
"*" "0 CO 0 S

Injecting equations (2.44) and (2.45) into equations (2.40) will result in:

w A Rcos" ..... .' j sin' w +f cos'i (2.46)

1-0 S Cos'

x cos r l-O 's*in ' - O 

v.13
13



AU- > co';" (A)- () / co!;, (2.4 7

J ) C -

"" '.in 0 -0 cIOSm D0-O ]

Appl\ ing equation (2.36), equation (2.35) can be written as:

L m / 2 (2.48)I!PT sl 11 ( = cos" ' - Timsiln 0 ,

I -O

Inject equation (2.43) into equation (2.48) to yield:

k (2.49)
';Ill (k f Sill = L m 21

-I

• here = -,n /2

Substituting equations (2.46), (2.47), and (2.49) into equation (2.29) yields:

G(V ( L-M-2( (2.50)
,' - )2_T Lmsin i

r. 11 / m.0 IRJp St f

× RE(I C1,,,- JSticosm (C-OS + S,, + iCu,)sinmn - O : )

x 1 ) y~cos' _' w +jsin £ u+fcossl}

I4 The last term of equation (2.50) is in the form of stncos'x. Applying equations (B3.2)

mind (B3.3). from Appendix B, to equation (2.50) yields:

.-. \ L-'n 21" - , r L m 2t(

- 0 x R f ,.0

RI {S (r ,,- / s,, cos D r-O + S,.L C L, sinm'(2-O> (2.51)

"~~ ~~ -" 2-2" ?" _. l - rn - 2 t + s (R1- s
Z' 2- -d

, c, I -2-2c-2d c +f + Isi n.l-21-2c-2c c w +4 cos'i>

14
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Let. - .- ,, and - -21-,- i - . Then applying trigonometry to the

.,, -]7,. co.;u )-0 S +jC sillrn f-0

Co; 1-2t-2c-2d v j *2s(n l-2t-2c-2(t (.,)

terms of equation (2.51) yields (3:5):

(; , r "> I f-%2 (2.52)• .. i-- > -,

rsin' ' ,iRF { I'cos I

" ' I -rrt )t q rt -

m; - 1? i ( - S C - S C w c .; 6 y

S;ri 6- y 1

S ince in equation (2.52) is a real physical quantity it is necessary to determine the real

part of the bracketed term. Consider the ' , ..... term.
". !

. 1 12 2 1s t-,m-2, (2.53)-j -1 =1 1i =11]

-',s 2 Irn /122=2

*-= - I I~ rn 2-t

Remember that k is the integer part of L- m2, so if i- , is odd (3:7):

L-m r (2.54)

2 2

L ,, 21-s - k-I 12 k- (2.55)

When /- "1 is even:

L - fn (2.56)

2

L m -_ f -1 "= -1 " (2.57)

IrS15
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As a result of equations (2.55) and (2.57) equation (2.52) becomes:

I = - "'\'o oYp /" tm 5-1 2

r 1 7.-"o R0"

* (rn cos'i 7 (L - m -21,- s) (2.58)
s L 2t L-

2-o C

( ( L-m -eeven

-S cos L-2t-2c-2d (+A + m 0-0

- i. od

-ILodd sin L-2t- 2c -2d w + f +m 0 0 }
'C I

Transform equation (2.58) so terms of the form:

I -121) w + f +m (-0 "

can be collected together. This is accomplished by letting (3:8):

P = t a~c (2.59)

This implies

1. - 2t - 2c - 2(1 = L - 2p (2.60)

Hence, equation (2.58) becomes:

C. k = T.n(2.61

In
I M21-3 " iL~r m 2 ts S

2L 21 0 - m) (t tn- Cost[ (L -2 p) (u + J rn ((2-0)
* 'I i- ,,, I- m.od

M, Imodd snfi 2 p)(w f1)m r(f) 0)J

a.--

• 1
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Evaluating equation (2.36) yields the following relationship:

SoS t < k (2.62)

Likevise, an evaluation of the binomial coefficient terms of equations (2.58*) and (2.61)

.ields:

0" S _ (2.62a)

0<_c <_ L-m-2t s (2.62b)

0 d- M-s (2.62c)

0 S p !5 L (2.62d)

" o~kexer, according to equation (2.59) t-p-c-i. Since both c and i have minimum

,alues of zero, -_ is equal to p. This implies that the maximum value of t will be the

smaller value of p or A, and equation (2.62) becomes:

ost _ the smaller of k or p (2.62e)

P' Grouping selected terms from equation (2.61), and taking into account the possible

%alues for t, ., , and p from equations (2.62), leads to the definition (10:34):

= . 2L-2t L m.,,_1,(2.63)

Z -t L-r t-2t 2 L-2f

is known in the literature as the Inclination Function. A table of values for this

function is given in Appendix C. Rewriting equation (2.61) in terms of the inclination

t unction gi-,es:

1
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'.I R " L it - m n cos[ (L - 2 p)(w m (f - 0)1 (2.64)
r ;L__ FL_51, -S kJ-m.odd

Smi -on sinc[o(L - 2)p)(w + + m(0Q- 0)]

C3. IRmo,

\ here equation (2.64) is in a form that is for a particular value of L and m.

Next, equation (2.64) must be written so that the r and , terms are expressed in

terms of ., , and . From equation (2.64) isolate any particular

I cos -(2.65)osf L-2p : w f +m 0 -0

6r

term and let

= L-2pv (2+rn'-0, (2.66)

Equation (2.65) becomes:

cos- L-2pV+f E (2.67)

Now, consider the term:

1 l (2.68)
1. cos; L-2pflu = L-2pf cosE-sin[ L-2Pfsin re

Here Born et al. introduces the term:

(2.69)
- xp jmf = ., exp J~mi

Where x, is known as Hansen's coefficients (2:2):

fxp ,@4. ( I "" (2.70)
2rr I j Iqp 2n"" .o~Id

' here

,18
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S= ) j(.

in the above equations is the Eccentric Anomaly. Employing equation (2.69) along

with the following relationships:

e\p jmf =cosrrf + jsirmf (2.73)

exp jtr cosim - jsinim (2.73a)

I =I-2p q m=l-2p n=-L- 1 (2.74)

:and noting that from equation (2.69) follows:

S cosm ." 'cos iM (2.75)

r X,- m sin- , (2.7 5a)
sinmt = X 'sin=.k/

changes equation (2.65) into:

0 u>'' cos (2.76)
1 -2p w I-2p I-m n -0

I ' 2 F t osLOq
I Ipq L-2p L -2p-q If m,f2-O

2 p [sin

Next a determination of the characteristics of Hansen's coefficients is necessarv. It

is beyond the scope of this chapter, but it can be shown that for the case at hand (2:5):

4 -: ((2.77)
n ... - 2 m -2O0 "

' m + 2() (1 (22." .- O

SIf .then direct substitution into equation (2.77) yields:

19
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_ -I -*L p(~ 2dL ?p (2.78)

\i . p . . .'
2 

T\
2

C p \

.' If: - .'v <, then equation (2.77) yields:
S _ L--2 2pZ 2d.2-L (2.79)

I ,e )(= dOP

"0 d_=2. (/ ~ 2d+2p-L d2

Here Born et al. makes the following definition:

p' = p for p < L/2 (2.80)

p' = L- p for p > L/2

This implies:

I. \ I  2p _ I _ P L L- I ) 2d ,+L-2p ') , e 2 -2p( . 1

0 ._ L 1,' 2d+L-2p d i 2

But

0 L I . -2p I = C Lp(2p-L(Q (2.82)

and when q> (3:A-13):

L I ?P=cjL k 1(2 2 p- 2 P vr.tf2k (2.83)
L\ I 2 p = 2 YV-f

k -_ 1.-o t q *k -r k-t

wkhen q <,':

,
2f 2p )2-2L)vl. 1 fl 2 k (2.84)

.o , .o - toq + k -r k t
k -0 0 1-0

where

c= -1 1 I +/32 'fl q (2.85)

L-2p-q o

213
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Substituting directly into equations (2.83) and (2.84) yields:.

I . ( 2 p 2 1 2 ( k2 (2.86)

yL i L-2p =C 2Z P ( -2 (~ 2 L -fl 2k (.7
k-0 r-r 1k-rft)kP

By examining the combination of cases for q>O, q<O, PSL12, and P>L/2 it can be shown

that (3:14-15):

L I. L 2p G Lfq P LpkQLqk1 (2.88)
L .pq ~ L,,, - q O (

k - 0

where

1 2p~--2L) I' i(L -2p'+ q' e (2.89)

Q np (-2p') I (41-2 p + q ;e (2.90)
r=0 n 2ft

In equations (2.89) and (2.90) the following conditions hold. h-k-q- if q 0. If q <0

then h k Also, p -p and q'-q if p:5L12. If P> L12 then p - L- P and q'--q.

The c., P, term is known as the Eccentricity Function. A list of this function's

values Is in Appendix C.

Equations (2.63), (2.64), and (2.88) allow equation (2.29) to be written into the

form:

-V R'jZ~mi (2.9)LpqWA~f.

r .

where

21



CLMp co[L 2p w -2enf~ - (2.92)
lL-rnoddC hLPwL2pqfm -

+L::jL-rn,oten sin "L-2pw+ L-2p+q AI+m D0-O'

22
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Ill. Atmospheric Drag

Atmosprheric Drag Effects

A satellite moving through an atmosphere experiences a force perpendicular to its

flight path ("lift"), and a force in the opposite direction to its flight path ("drag').

Because of variations in a satellite's attitude, the resultant lift force is usually zero. This

is especially true for spherical satellites, or satellites whose length is greater than its

diameter. Even if the resultant lift force is not zero, its effects, when compared with

4 drag, are still negligible (15:295). Drag, on the other hand can have a profound effect

on the orbit of a satellite.

In this analysis, the atmosphere is modeled as a locally exponential atmosphere.

Therefore, the density of the atmosphere is decreasing exponentially with altitude,

implying that drag's predominant effects occur when the satellite is near its closet

approach to a planet. At this point the flight path angle is approximately zero. Thus,

drag will be acting directly opposite to the satellite's velocity vector. This will have the

effect of slowing the satellite down, and hence, decreasing its energy. The decrease in

the satellite's energy will result in a decrease in the semi major axis a, and the

eccentricity, ?. Although periapsis altitude will decrease somewhat, this decrease is very

small wkhen compared with the resulting decrease in the apoapsis altitude. The over all

effect of drag will to be to "circularize" the orbit.

If the atmosphere were perfectly spherical and nonrotating, the reduction in a ando

ould be drag's only effects on the orbit. However, atmospheres share the same

propensitN for oblateness as their planets and tend to rotate. The oblateness of the

atmosphere will induce small changes in the argument of periapsis, Uw, while the rotation

of the atmosphere results in small lateral forces on the satellite. These lateral forces

cause increasing changes in the angle of Inclination,,~, and small periodic changes in the

longitude of the ascending node, n (11:6-7).

23



' The atmospheric drag on a satellite may be expressed as (15:295):

pD 2 SC (3.1)

2m

where D = the force of drag

. = the atmospheric density

= the velocity of the satellite relative to the atmosphere

s = the effective area of the satellite

c, = the coefficient of drag

m = the mass of the satellite

* Atmospheric Density

Appendix D develops the expression used for a locally exponential atmosphere.

-, This expression is:

P = Pexp' gtm z(3.2)
RT

In equation (3.2), z is equal to the altitude above the planet. To write equation

(3.2) in terms of the radial distance (,) from the center of the planet let:

= r - R (3.3)

\,where R, is the radius of the planet. Using an expression for the rectangular

components of a point on the surface of a planet as found in Escobal, page 26, R, can be

written as:

24
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k ,here , = the equatorial radius of the planet

= the eccentricity of the planet's shape

- = the latitude

Applying equation (3.3) to equation (3.2) yields:

p= Poexp- ( r-R 
(3.5)

The bracketed term is equa, to 1/H, where H is the "scale height" and is equal to the

change in altitude required in order for the density to change by one exponential. As

can be seen from equation (3.5) it is not constant, however, at the altitudes that the

satellite will experience significant air drag H is so large it can be treated as a constant.

For example, using data obtain from the Viking I space craft, at 200 km altitude the

"A.- scale height is 14.1387 km (16:4368-4373). It is because the scale height can be

considered a constant over some small altitude band that the assumption of a locally

* exponential decreasing atmosphere may be made (18:4). Therefore, equation (3.5)

becomes:

-. -p= poexp R(

Velocity With Respect to the~ Atmosohere

Let:

= velocity of satellite relative to the atmosphere
I4

= velocity of the satellite relative to the planet
'A.

= velocity of the atmosphere relative to the planet (atmosphere assumed to

be moving west to east)

S.% 1

.0.

,A... -.
25



Figure 3.1 shows the angular relationships between these vectors.

..

a/.

"-5x

SA

Angular Relationships Between the Different Types of Velocities

Figure 3.1.

From Figure 3.1 it can be seen that:

=tL-U (3.7)

Applying the law of cosines yields:0

.2 2 U 2 _ 2vucosy (3.8)

a,

a,

, 
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" * *'.'. Assume that the atmosphere rotates with an angular velocity v about the planet. Then

u = ru cos€ (3.9)

where r = radial distance from the center of the planet

0 = latitude

Using spherical trigonometry and the angular relationships in Figure 3.1:

cosi = cos 0cos y' (3.10)

This analysis assumes, since the most profound effects occur at periapsis, that the

satellite is at its periapsis point. Thus implying that, Y - y. y is still a good

approximation for ) even when the satellite is not at its periapsis point. However, the

satellite must be with in two scale heights of periapsis altitude to keep the error of

assuming - to less than one percent (11:23).

Therefore, assuming., -Y and applying equation (3.10) to equation (3.9) yields:

u =rucos0 (3.11)

COs I
- = rw

co; y

u cos y r a) cosi

Substituting equations (3.9) and (3.11) into equation (3.8) yields:

, rw 3 2 312)
-. =e I - -w sr 0 - os I

SI

For the planet Mars, the atmosphere rotates with approximately the same angular

xelocitv as the planet (18:3). Therefore, ,- ooooo, radians per second (13:2-3). This

Small value for , results in the ,'; term in the above equation being vanishinglv small

when compared to 1 and will be neglected. Further, since drag effects the periapsis

4.
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... -ltitude, -elocitv, and angle of inclination, equation (3.12) must be rewritten for some

reference periapsis altitude, velocity, and inclination. This is accomplished by letting

- . , - , and -,. Equation (3.12) becomes:

( r_, 0 w 'N(3.13)' 1 "- : I . . CO ;Io

The Cross Sectional Area, S

The cross sectional area effecting drag, S, will be a function of the satellite's shape

and flight path angle. Due to the array of scientific sensors desired for a Mars mission,

the satellite's shape will most likely be very irregular, implying that the effective cross

sectional area may not be known. No matter what the shape, a satellite in uncontrolled

• flight will have a tendency to rotate about its axis of maximum moment of inertia

(8:369-371). For cylindrical shaped satellites with a length to diameter (L/d) ratio

greater than roughly 2, this rotation will cause the satellite to move through the

atmosphere tumbling end over end, or revolving like an aircraft propeller (11:16).

In the first case a mean value of s is:

° -7( I 2) (3.14)
S Ld- -nd 2

and in the second case:

"-kS = L a (3.15
415).%:

" where = the length of the satellite

- the diameter of the satellite

If the direction of the spin axis is not known, then the mean value of , is

* ' .,mevhere in-between the values given in equation (3.14) and (3.15). Averaging these

t\.o equations yields:
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Fhis value will never be more than 15 percent off the extreme case (satellite spinning

like a propeller).

When L,,d is less than I/2, the spin axis becomes the axis of symmetr\. In this

case, if the spin axis is aligned with the satellite's direction of motion:

S = nr2 (3.17)

If the spin axis is perpendicular to the flight path, - is given by equation (3.15). In this

case, if is much smaller than i the value of s can become very small. This implies that

the error associated in averaging the values of equations (3.15) and (3.17), when the

direction of the spin axis is unknown, can yield differences between the actual and

estimated values of - that are much greater than those of the previous case.

For this thesis, based on a rough estimate on the size of satellites currently orbiting

the earth, a cross sectional area of - lo-- will be used.

The Coefficient of Drag, Cn

The coefficient of drag is dependent upon the density of the atmosphere, the

Reynolds number, angle of attack, the shape, and the speed of the satellite. These

parameters not only vary from satellite configuration to satellite configuration, but can

also vary through out the satellite's flight path.

* As the density increases three distinct regions of atmospheric flow are encountered.

,- First, continuum flow, is the region where the atmosphere deforms continuously under

the shear force applied by the moving satellite. The Viking project found that for Mars

this region exist from tbe surface to about 90 km altitude. For Viking the coefficient of

drag in this region was approximately 1.47. Next, the slip flow region, which exist from

about 90 km to 115 kin, is a region of transition between continuum flow and free

molecular flow, the third region. Free molecular flow exist when the distance that a
.

.
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molecule can tra\el A ith out striking another molecule, its mean free path. greater

than the dimensions of the satellite. For Mars this region exist for altitudes greater than

r.,ughlk 115 km

Ihis thesis is concerned primaril,, with the region of free molecular flow. In this

region the coefficient of' drag can %ary as the angle of attack of the satellite ,aries, and

III be on the order of 2.0 to 2.25. A CD of 2.0 will be used in this thesis. This value

wlas chosen because it wkas the coefficient of drag used on the Viking mission (16:4369).
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.-'*" IV. Computer Program Validation

Description of the Program

Part of the analysis of this thesis was carried out using the Artificial Satellite

Anal\sis Program (ASAP), see reference 13. This program uses Cowell's method.

Essentially this involves taking the state vector of the satellite with respect to an x, y, z

coordinate system whose origin is at the center of the central body, whose xy plane lies

in the plane of the equator, and whose z axis goes through the north pole of the central

body, and then solving the associated equations of motion via a numerical integration

package. ASAP uses an 8th order Runge-Kutta integrator that requires the equations of

motion be written as a set of first order differential equations. This process looks like

= Tx.y,::,.T  
(4.1)

vhere = velocity in the X direction

S = velocity in Y direction

.-.- velocity in Z direction

\ppling Newton's second law (to determine the equations of motion), and keeping in

mind that the Runge-Kutta package used requires a set of first order differential

equations yields (13:3-I):

,,,1 '-/lr-+ Perturbations(4)

%'" A ' (4.2)

-- ,' 9=-p-3 + Perturbations
r

L = =- Pertrubations (4.)

r

- 3
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w here . = the universal gravity constant multiplied by the mass of the central

body

This thesis will only consider those perturbing effects caused by the central body and

atmospheric drag.

Perturbations due t Central Body. ASAP uses equations (2.29), (2.91), and

(2.92) in order to find the geopotential in terms of latitude, longitude, radial position,

and the classical orbital elements, t, e, w, .v, and n. The implementation of these

equations into a form acceptable to the Runge-Kutta integrator requires the conversion

to cartesian coordinates. This is accomplished by rewriting equation (2.29) such that

only effects due to departures in the central body's shape from a perfect, homogenous

sphere are considered. The resulting equation is:

C'm r L(4.5)
4> rO,A P- -P sin CL, cosm A - S,,sinmk.

Fhe perturbing portion of equations (4.2) through (4.4) due to the central body can now

be written as (13:3-1):

1 30 6 0 1 30 (4.6)

krrr 2 , 2 Y y 2 a C/ X 2  2 6

. d & 'C)Id 0 (4.7)

(.r a~r r: 2 .2 YaA

)."I ( 4 ,~x2 + y (4.8)
r , dar r 2  30

w here

(~A ~ r> (4.9)
I l'(,.A R 1 I Pl' .;,rn CLcosmA S,,ssnm

~r r r
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-. \ r P7' sino -mtaiOP7 sin .,,.,co.;mA-S,simA (40

4 G ut )i P,- ri O S , o m C . ii rA
r R,

Perturbations due to Atmospheric Drag. Since atmospheric drag acts to retard the

motion of a satellite, the equation of motion of atmospheric drag used by ASAP is the

%-' negative of equation (3.1). As a model for the atmospheric density change with altitude,

equation (3.6) is employed; however, the selection of a reference height from which to

base density calculations is allowed. This is implemented by replacing the R, term in

equation (3.6) with a reference height term, h,. The program also takes into account the

departure in the central body's shape from a perfect sphere by use of equation (3.4).

Program Validation.
b4.-

"

The following equations were used in the validation of ASAP. They were derived
4,-

from the Lagrange Planetary equations where the disturbing function is derived from

equation (2.91), using only the zonal harmonics up to and including the 6th zonal

f 14:28-30):

R( (J R ( j (4 .12 )

,.,here

2 = 0 (4.13)

' 2 ,(4.14)
- slnLco2 I Ir- sin 1

, C2 y 3 s ) ?> 9 ) rn2 (4.16)
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.1(4 17
s "i I( - p P 2cu I S I p 1 -lrl t

2," 66 I10

"- ~ ~ ~ S l ll 7 - I 'I i, P COSLd) -sin' i 0 e: -- sin' (7 s- ".n t OC S

It 2 r it V J p 2 + 1 22

where

1 =0 (4.20)

I 1 m 4 2 i ) cosowcosi

15 7 2 2 (4.22)

t, I ) c c 
7

Sf 4 3-,( 2 2( .3

( Y I - III~l = 21 S i 602 JCos w (Ii elo siw ir( . 3
2 8 4 "8 8

;i 2t(I -3smn t sin P sn2w - Is nP'sin 4 sin( 4
1, 2 n 7 15 2>0 1 (4.25)

S In 2 I Si ll 2 e 2w

"" 2 4 ,16 32

R R )(426)
If) 2 jT J f) j 2 p fl

where

3 (4.27)
2 =-2coSt

=2 I - (s5  2 1)esni(oI(4.28)

2 4

34

%"' "-"-""



V_ %.V"1. L-

S -=- - 1 sn3 3. (4.29)

\\lA 2~2. o 31-2  I 1

I W 4 2 15 (4.30)
- o cdi 1 i sn 8 n) sill,3o

= co t [' 9-si 2 + 3- Si4 1 OSe 2  e .
4

16 2 8 8

16CsK- + t+---~c s ln."

Sin 21---sin 4ll1 1 e 2  ros2w- I 33 •sInI e4 cos 4w s I n]
16 2 2 20

r-SI I [ I -S2  COS(A) + - n 2  e 24

(--4 16-

8' 8

( 4 ' (4.33)

-44

'A. (1 = 0 i sil 2 = 1 3- Sn -- C I - COsmJC(434)

- w 2 464

22

W2 3("-5sl (4.34)

". 5 2 35 2 ' 224,5
U)3 e + - + ' In1 -k sil sin CO Icos~eC]

:0

°'.2
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.4,

," " 105 1 2 3 4 2) - +2sin I -- sin I sin I

76 ( t 2

-4 87 n21 67 n41 357 Sir 6 + + Si(437)

\/7 2 16 8

'267 165 6 p4 - 39 2 33 s  4 " C U- s n ' - 
- sin I 1---6- sn 8 - sin 

8

5258( 2 129 4 297sinLU, = 64[-l-8sin t+--sin8 i- siI
6-45k 8 32 J

2 6 t 33 ,, 4 cos2w .-n2 6 1 43 2 109 .4t 121 - n (-( 2-(sln
2 i - - i -- si t- -109 i t . .. S

.,.[.8 6 8 8

%2 -159 . 561 6
25sin - sin 16 sin u lcos2w

+ (4.38)

3( 1 1 2 2 4i +2 9 4 429 C) 4
<i l- ilsinlQcos-tsin 2 sine ic-Sin 2- sin si

8 10 2 4 32

2 1 16

" i snU22 - 143 4) 42

'- - -1 + sin 2i -- sin i e cos4co sin
- 5 40

9 jj,,= 23 sin t-5  sin 4)i e 2 COSi s"4 6 8

445 1 23 2 5N, ;n'- sin 2+ sin i -sin nI cos2 s-12 t8- 12 8 (4.39)

2" \-6 +  .-sin t- -sin P O W _ - i ecoso -w

1 )'2 8 - 32 12 24 16
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r-VV-rV-wV-V- 7- wv -

. - Each of the above 4 orbital elements (P, ,, f, u,) were analyzed and predictions were

made as to what values will drive the change in each element to zero. These predictions

"were then tested b% running ASAP with the appropriate elements. If ASAP is reliable

both the predictions and the ASAP output should agree.

Because , contributes only to the long term perturbations, which are periodic over

., one axial period (the time for the line of apsides to make one complete revolution), all

trigonometric terms containing - will be set equal to zero. This greatly simplifies the

abo~e equations, and is valid due to the method of averaging when applied to the -

terms of equation (2.91). Setting -, equal to zero causes all the odd zonal harmonics in

equations (4.12) through (4.39) to go to zero, and eliminates many other terms from the

even zonal harmonics.

* Eccentricity and Inclination. Equations (4.12) through (4.25) do not have any non

zero terms once trigonometric functions of w have been set to zero. This implies that no

matter what the size, shape, or orientation of the orbit the secular changes in

eccentricity and inclination due to zonal harmonics are zero. Eccentricity and

inclination will experience a short term change due to a change in the mean anomaly,

and also a long term change due to precession of the line of apsides; however, since

both these effects are periodic, and since the change in w over one orbital period is

, small compared to the change in mean anomaly, the change in eccentricity and

inclination over one orbital period will be almost zero while the change in eccentricity

and inclination over on axial period will be zero. This prediction is also supported by

" I Roy, page 290.

Several computer runs were made with ASAP using different input values. These

data runs considered the perturbative effects due to zonal harmonics up to and including

an order of six. In all cases the output was consistent with the above predictions.

Figures 4.1 through 4.4 are a representative sample of the output, and indicates the

change in eccentricity and inclination over one orbital period, and one axial period.

Table 4.1 lists the input orbital elements used to generate Figures 4.1 through 4.10.
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Input Orbital Elements for Figures 4.1 Through 4.10

Table 4.1

Input Or- Figures Figures Figures Figures
bital Ele- 4.1 and 4.2 4.3 and 4.4 4.5 and 4.6 4.7 through

ments 14.10

akmn 4000 3992.6667 3992.6667 3992.6667

.10165 .1 .1 .1

degrees 45 82.2464924 90 63.2604625464

ndegrees 90 90 90 90

degrees 270 40 270 270

L' -degrees 90g 90 90 90

13313 1 .~
I~~~F f I _T 1

Change in Eccentricity Over One Orbital Period (6 X 0 Gravity Field)

Figure 4.1
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. **45.0500

4 -H 99503

z

F i5.r04.

z

17544..9500 .10062850

0.00 1.00 HOURS 2.00

% Change in Inclination Over One Orbital Period (6 X 0 Gravity Field)

Figure 4.2

-J-

0w .00 50.00 DAYS 10O0.0

" Change in Eccentricity Over One Axial Period (6 X 0 Gravity Field)

Figure 4.3

39

%



vI

s2.26C -

82. 30493 82.255722046

P2.250C

tz

82.240C I I

0.00 50.00 DAYS 100.00

Change in Inclination Over One Axial Period (6 X 0 Gravity Field)

Figure 4.4

Note, due to inaccuracies in calculating the exact axial period, the change in eccentricity

and inclination shown in Figures 4.3 and 4.4 are not exactly zero.

Longitude 9f the Ascending Node. Equations (4.26) and (4.32) have the term cost

"- as a common denominator. Thus, any value of the inclination that drives the cost term

to zero will cause the change in the Longitude of the Ascending Node (n) to also equal

zero. A polar orbit (,-,o) has long been known to yield -in equal zero. Figure 4.5 shows

the ASAP output given an input value of , equal to ninety degrees. As expected,

* throughout the orbital period there is no change in n.

.t
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Z_2

Z

90.000 -

Z
-

80.000 j I I I I I I I I I f I I I ,

0.00 1.00 HOURS 2.00

Change in Ascending Node for a Polar Orbit (6 X 0 Gravity Field)

Figure 4.5
-.%

In addition to the predominant cost term, equations (4.27) through (4.32) also

contain other trigonometric functions of i. A search for values of , (other than ,-go,

t-270) that will cause in to equal zero was made by inputting equations (4.27) through

(4.32) into equation (4.26). The cost terms were eliminated by setting in equal to zero

and then dividing by cost. The only t terms left in the equation are powers of sint.

Terms were grouped by the power of their associated sint terms thus producing a 4th

degree polynomial. By making the change of variable f-sin' the polynomial is reduced to

a quadratic. This quadratic was solved using the computer program Capmega given in

* Appendix E. The results show that for eccentricities from 0 to .9, and for inclinations

from 0 to 90, there is no other value of that will yield in equal to zero other than

those values of associated with a polar orbit.

Note that equations (4.21) through (4.25) also have a common denominator of cost,

thus implying that the change in inclination will also be zero if in a polar orbit. This

c gives another opportunity to validate ASAP by noting its predicted change in inclination

for a polar orbit. Figure 4.6 shows the results of this procedure.

A.

"-
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0.00 1.00 HOURS 2.00

Change in Inclination for a Polar Orbit (6 X 0 Gravity Field)
-- Figure 4.6

~ ~.Argument of the Periapsis. In a process similar to the one described above,

equations (4.34) through (4.39) were substituted into equation (4.33), and terms of

similar powers of sint were grouped together. The program Omega (found in Appendix

* E) was used to solve the resulting polynomial. The results yielded a particular value for

taking into account the zonal harmonics up to order six, that causes Jw to equal zero.

Trhis value is know as the critical value of L, and is dependent on the semi major axis

and the eccentricity of the orbit. A critical value of twas determined for several

different values of eccentricity and semi major axis. These values were inputted into

* ASAP. In each case ASAP yielded the proper result.

As with the eccentricity and inclination, - is subject to short and long term

perturbations; therefore, when the inclination is at its critical value, the change in

o~er one orbital period should be close to zero, while the change over one axial period

V.- should be exactly zero. Figure 4.7 shows that the change in - over one orbital period is

.r., indeed almost zero. Figures 4.8 through 4.9 demonstrate the closed nature of the change

in eccentricity, and inclination vs. the change in the argument of the periapsis over one

u42
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,rbital period. Figure 4.10 shows that the same closed relationship exist between the

.emi major axis and the argument of the periapsis, agreeing with the literature (see Roy,

palge 290).

273 83703613 2042~~

250

25 .5 -I I II- I I I I I I

0.00 1.00 HOURS 2.00

Change in Arg. of the Periapsis Over One Orbital Period for Critical Value of
Inclination

Figure 4.7
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.' vs. Eccentricity Over One Orbital Period for Critical Value of

Figure 4.8
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Figure 4.9
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Figure 4.10

A look at the change in 'over one axial period was not made because of the

e'xtrernel long axial period associated with the critical values of i(on the order of 15

Atmospheric Drag. Eqiuation (4.40) describes the change in the semi major axis

due ;olely to atmospheric drag over one orbital period (11:4 1)

* .1=~c26J ~~csE p/IF(4.40)

I -ecosE

Shere

b sc0  (4.4!)
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1 (4.43)

I \ P t (I (1 0 0 / le CostI-

EtLquation (4.44) describes the change in eccentricity due solely to atmospheric drag over

one orbital period ( 1:41):

(- eC(4.44)j d ap6l -cosE ) il- cosE

Putting equation (4.44) into integral form yields:

(4.45)

. o = -( 1 6 -+ -- - - 1 - e c o s E d E
-,-Co p I -ooss/d

Equations (4.40) and (4,45) where solved using an 8th order Gaussian-Legendre

quadrature method (see program Dsemi in Appendix E), and the resulting output

ecompared to ASAP. The results showed that the above equations and ASAP give

reasonably close answers.
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S-. V. Anaksis

The Mars Geoscience Climatology Phasing Orbit

The Mars Geoscience Climatology Orbiter (MGCO) phasing orbit is a frozen orbit

planned for the next U.S. space mission to Mars. Table 5.1 list the elements of this

orbit. The Longitude of the Ascending Node (n) of the actual orbiter will be set by the

approach asymptote, which, for the purposes of this analysis will be 90 degrees.

Orbital Elements for the MGCO Phasing Orbit (17:3)

Table 5.1

Input Or- km t degrees n de- de- v de-
bital Ele- grees grees grees
ments for:

MGCO 3747.2 0.0081 90.00 90.00 270.00 90.00
Phasing
Orbit

i iIn order to determine the predominant characteristics of a frozen orbit the above

elements were inputted into ASAP, propagated for one and three orbital periods, and for

,,ne akial period using both a 6 X 0 and a 6 X 6 gravity field (with and without

itrmo.spheric drag). The axial period was estimated by using:

(it 2 a(1 2 N~~Sil) a

i . ,n %k I was deri ed from the Lagrange Planetary Equations using only the second

i- hirmn n,: of equation (2.91). Analysis on the output revealed that over one orbital

.. h, .itm,, pheric drag has no appreciable effect. However, for a 6 X 0 gravity

o !-,ecrea,e in the semi major axis over one axial period is 0.5 meters more when

.rr than " hen ahsent For a 6 X 6 grakity field, atmospheric drag causes theE

4 . i t,, decrease h 0 I meters more than the presence of a 6 X 6 gravit,

"I
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" .. Figures 5.1 through 5.3 show the effects due to atmospheric drag and a 6 X 0

gra\ity field, while Figures 5.4 through 5.6 show the effects due to atmospheric drag

and a 6 X 6 gravity field. Figures 5.1 and 5.2 are -losed curves, asserting that the

.alues of the argument of the periapsis, the eccentricity, and the semi major axis are

bounded. In examining Figure 5.3, it should be remembered that the inclination does

not change over one orbital period for polar orbits (see equations (4.19) through (4.25));

therefore, Figure 5.3 shows that the values of the argument of the periapsis and the

angle of inclination are also bounded. This bounded condition implies that the values of

the argument of the periapsis, the eccentricity, the semi major axis, and the inclination

are periodic over one orbit. This situation changes when a 6 X 6 gravity field is

introduced. Figure 5.4 reveals that the initial value and the final value of both the

argument of the periapsis and the eccentricity are not the same. Over one orbital period

the argument of the periapsis changes from t = 275.67128 degrees to w = 276.55445

degrees, a change of approximately .32 percent over the initial value. The eccentricity

changes from ' = .00810551 to = .00806312, representing a change of .5 percent over

- . the initial value. Figure 5.5 reveals that the the semi major axis changes from a =

3756.23351 km to a = 3756.16521 km, giving a change of approximately .00182 percent.

Although Figure 5.6 shows no discernible difference from Figure 5.3, an analysis of the

data shows that there is a 0.04756 degree change in inclination over one orbital period

when in a 6 X 6 gravity field. These changes in the orbital parameters indicate that the

above orbital parameters are not periodic over one orbital period when in the presence

of a 6 X 6 gravity field. To test these conclusions, the MGCO phasing orbit was

propagated over three orbital periods for a 6 X 0 gravity field and a 6 X 6 gravity field,

both with drag. For a 6 X 0 gravity field, Figures 5.7 through 5 9 show that the orbit

continues to exhibit the same periodic behavior in the argument of the periapsis, the

eccentricity, the semi major axis, and the inclination over three orbital periods as was

established in the first orbit. This confirms the predictions made from Figures 5.1

through 5.3.
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The values for the argument of the periapsis, the eccentricity, the semi major axis,

and the inclination for a 6 X 6 gravity field over three orbital periods are shown in

Figures 5.10 through 5.12. As predicted, the values in these graphs are not periodic over

one orbital period.

.-
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0.00900

0.00400 -

254.00 204.00 274.00 284.00
ARG. of the PERIAPSIS (DEG)

,s. 0, One Orbital Period, MGCO Orbit, 6X0 Gravity Field, with Drag

Figure 5.1
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" Figure 5.2
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Figure 5.3
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ARG. of the PERIAPSIS (DEG)

vs. 0, One Orbital Period, MGCO Orbit, 6X6 Gravity Field, with Drag

Figure 5.4
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Figure 5.5

51



o2

10000

50.000

254.00 2a4.00 274.00 284.00

ARG. of the PERIAPSIS (DEG)

.s. , One Orbital Period, MGCO Orbit, 6X6 Gravity Field, with Drag

Figure 5.6
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Figure 5.7
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SFigure 5.12

L .,'" In the next step of this analesis, the phasing orbit was propagated over one axial

period. Figure 5 13 shows the effect of a 6 X 0 gravity field, with drag. The figure

74

indicates that the xalues of the argument of the periapsis, and the eccentricity are not

quite periodic o~er the axial period, which is not correct. The axial period was

,,tinted from Fquation (5.1). which does not take into account zonal harmonics greater

tnn th.a nor any of the sectoral harmonics, therefore, it does not return the exact axial

period It' the input axial period were exact then, Figure 5.13 would be closed. The

.-4 t4Ir ,tep appearance of Figure 5,13 is due to the inputted computer step size-- the

,urge i, actuallk smooth.
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Figure 5.13

p The results of the phasing orbit propagated over one axial period for a 6 X 6

gr',\ity tield, with drag, are shown in Figure 5.14. Due to the large amount of data

[points generated for the 6 X 6 gravity field, data at every 20th ascending nodal passage

* x~%k:ih plotted, therefore, the appearance of the graph is very erratic. if data were not

t~iken at e~ervr 20th ascending nodal passage. but at an interval consistent with Figure

5 13, then Figure 5.14 would appear as a dark mass making analysis difficult. The

mportanlce of Figure 5.14 Is not in Its erratic shape, but like Figure 5.13, the argument

0..

4 periapsis and the eccentricity both are bounded.

4%.
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Figure 5.14

;rhe %IGCO phasing orbit was analyzed to gain an understanding of the nature of

trozen orbits. As defined in Chapter I, this thesis considers a frozen orbit as any orbit

in whi.'h the time rate of change of one or more of the orbital elements is approximatelN

zero, or nonsecular. For example, the above orbit (in a 6 X 6 gravity field) does not

lpss a single orbital element whose time rate of change is zero- howe~er, the

irgunient of the periapsis oscillates about its original position, and hence, the phasing

rhtt i; considered frozen. Further analysis will be carried out to determine if other

. t r,,zen, or stable orbits exist other than that class of polar orbits with the periapsis

.cio.'d e )er the poles. Further, are there orbits whose time rate of change of one or

mre ,rbital elements equals zero? If so, where are these orbits and what are their

"-." l~d :in t~ges '

Sere \1jlr A\xi Egual 12 493. Kilometers

Initmik. a alue of the semi major axis of 4393 4 km and an eccentricity of .1 was

6 1h en I hese %alues establish a periapsis altitude of' approximately 560 km. The first
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* -. eoal is to freeze one of' the orbital elemen ts. . : o hen Ina b \ 6 gr1' % it h ,-

I .r the NIGC() phasing orbit, the argument of the periapsis, and the eccentric:its hue

the greatest rate of change o~er one orbital period, therefore, these t~o elements "III he

* . the focus of this step.

\ith the %alues of the semi major axis and the eccentricit% established. the

program Omega (see Chapter IV and Appendix E) wkas run in order to determine the

* \alue of the critical inclination angle [that %alue of inclination that "freezes" .o~er one

* orbital period] for the case of a 6 X 0 gra% itN field. Wkith this %alue of as a baseline, a1

t)o \ t6 gra\ it,, field was introduced and numerous runs of ASAP \Aere made in trder T,,

find a critical inclination %alue of 68.15285662 degrees. This critical inchnation. alting

\kith the other orbital elements inputted into ASAP define Reference Orbit = I

Reference Orbit =I's input is listed in Table 5.2

Orbital Elements for Reference Orbit **I

Table 5.2

--- = p S-

Input I km degrees de- .degrees v' de-
Orbital grees grees

Elementsj
" or

Ret 4193.4 . 68.15285662 90.00 27000 90.00

Figures 5.15 through 5.17 indicate that the change in , for this orbit is indeed

the r- u hile the change in , and is not equal to zero. Further, Figure 5.16 InditpteN

.th t the change in the semi major axis Ns. the change in the argument of periapsis ih

I-u nd ed Figure 5 18 shov s Reference Orbit 0 1 propagated over a 255 da% period

\Orhough 255 da (s is onk a fraction of this orbi's ixial period (the axial period is on

the order of 15 %ears), It is sufficient to see that the effect of the change in eccentric:it\

ATI incl ination causes the argument of the periapsis to change by approximatele 20

-U°

- ' orbitl pehir does not compare farabl, %kith the isGC phasing orbit.
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4

I le abt\ e tigures re, eal that the unbounded nature of eccentricit, and inclination

. ler',el% effect the change in the argument of the periapsis. The anal~sis indicates the

reri.ip,,i does not oscillate about a particular point (as in the case of the %IGCO phasing

"r it. tut instead, is unbounded, A search for a input ,,alue of the eccentricit, v, hiAh

:auses the change of the eccentricit. and the inclination to be zero over one orbital

period .kas made for ,alues of eccentricitN from .01 to 0.7. Figures 5.19 and 5.20 sho.,

the re.,ults of this search and re ,eals, for Reference Orbit =I, a ,alue of eccentricit.

- hich drixes the change in eccentricit, and inclination (o.er one orbital period) to zero

q,_ A.e, n,,t ex\it. Note, an% eccentricit. greater than approximately 227 will cause impact

%kith the planet's surface.

Figure 5 21 reflects the effects of ,arious eccentricities and inclinations upon the

,hange in eccentricit, Since circular orbits facilitate the use of scientific instruments

I .1-signed to observe the surface of Mars, it is desirable to keep the ,alue of the

zecentricit', to a minimum Also, in order to minimize the effects of atmospheric drag a

minimum periapsis altitude of 200 km is imposed. Gien Figure 5.21 and the abo-e

te,,tri,:tions, analsis reealed that an eccentricity of 0.3 and a semi major axis of

5133 428571 km offers the best compromise between the desire to keep eccentricit\ to a

.minimum, and the need for an eccentricity which dries the change in eccentricit. o\er

, h ttl periwd to zero

o-
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Semi .Maior Axs EQual to 5133.428571 Kilometers

With the value of the semi major axis established at 5133.428571 km, the value of

the eccentricity was swept from e = 0.01 to e = 0.3 for values of inclination ranging from

I to 90 degrees (see Figures 5.22 and 5.23).

0.00002 e-

ocoooo e .25

e .2

>-0.00002

-0.00006

-0.00008

-0.00010

"-.00 2 I [ I I I I I l i i i

0 20 40 60 80
INCUNATION (DEG)

Inclination vs. Change in Eccentricity, One Orbital Period, Ref. Orbit #2, 6 X 6 Gravity
Field

Figure 5.22I

The above graph shows the effects of various values of eccentricity and inclination

on the change in eccentricity over one orbital period. From this graph was determined

an inclination angle of 15.05252881 degrees that will cause the change in eccentricity to

tl equal zero over one orbital period. These orbital parameters, along with the other

associated input parameters define Reference Orbit #2, and are listed in Table 5.3.
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In Figure 5.23 the effect of eccentricity on the change in the argument of the

periapsis over one orbital period is investigated. Three important findings stand out.

First, there appears to be values of eccentricity near zero such that no matter what the

*.-- angle of inclination, the change in the argument of the periapsis over one orbital period

"ill never equal zero. Second, there exist values of eccentricity and inclination (from

= 0.03586336 at , = 90 degrees to e = 0.3 at ,= 65.91286827 degrees) which cause the

change in the argument of the periapsis to equal zero over one orbital period. Third, as

the eccentricity increases (at least from 0.03586336 to 0.3) the resulting critical

inclination angle decreases.

The value of the angle of inclination which causes the change in the argument of

the periapsis to equal zero over one orbital period when eccentricity is equal to 0.3,

-together with the other orbital inputs, defines Reference Orbit #3. The input values for

Reference Orbit #3 are listed in Table 5.3

Orbital Elements for Reference Orbits #2 and #3

Table 5.3

Input a km e degrees n de- w degrees v de-
Orbital grees grees
Elements

for:

• Ref 5133.42857 1 .3 15.05252881 90.00 270.00 90.00
-~ Orbit #2

Ref 5133.428571 .3 65.91286827 90.00 270.00 90.00
Orbit #3

Oil
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%,, Table 5.4 list the input orbital elements that causes the change in the argument of

the periapsis to equal zero over one orbital period when the inclination equals 90

degrees. This orbit is known as Reference Orbit #4.

Orbital Elements for Reference Orbit #4

Table 5.4

Input a km , degrees n de- w degrees v de-
Orbital grees grees

Elements
for:

-, Ref 5 133.428571 .03586336 90.00 90.00 270.00 90.00
Orbit # 4 1 -

* Figures 5.24 through 5.26 show Reference Orbit #2 over one orbital period. From

these three graphs it can be seen that only the change in eccentricity over one orbital

period is zero. Propagating Reference Orbit #2 for 90 days reveals that the argument of

- k' the periapsis changes by 720 degrees during this time period (see Figure 5.27).
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S 0.30000
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10.29800 - i I I I I I I I I I I I I I I I I I I I
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:'.p ARG. of the PERIAPSIS (DEG)

vs. o, Ref. Orbit #2, One Orbital Period, 6X6 Gravity Field

Figure 5.24
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argument of the periapsis over a 90 day period is only 34 degrees.

~Comparing Reference Orbits #2 and #3 shows that the change in the argument of

' " the periapsis and the semi major axis are significantly larger for Reference Orbit #2.

" The change in the argument of periapsis for Reference Orbit 0*2 is approximately 1.5

'. degrees, while the change for Reference Orbit #3 is zero. Likewise, the change in the

"¢' semi major axis for Reference Orbit #2 is approximately 0.5 kilometers, compared to

II approximately zero change for Reference Orbit #3. The situation reverses when looking

~at the eccentricity and the inclination. The change in eccentricity over one orbital

period for Reference Orbit #2 is equal to zero, while the change in eccentricity for

Reference Orbit #3 is approximately 0.00005. For inclination, Reference Orbit 3
experiences a change that is approximately 10 times greater than that of Reference Orbit

#2.

Cmn g Reference Orbits 2 and #3 shows that th 'hag in the agmn of"'"

th praisadtesmmaoxS aesgiiatylre o eeec ri 2
Thechngeinth arumnt f ra psfoReencOri#2sapoxaty1.
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,igure 5.32 through 5.34 sho. the changes for one orbital period associated ' ith

Reference Orbit n4. The magnitude of the change of the argument of the periapsis, the

0-" e: entricit\ the semi major axis, and the inclination are all of the same order as those

, c'hanges for Reference Orbit -3, howe~er, for Reference Orbit =4, the the argument of

the periapsis changes b. 150 degrees per 90 days (see Figure 5.35), as opposed to 34

degrees per 90 davs for Reference Orbit #3. The reason can be seen in Figure 5.22.

For Reference Orbit #3 the inclination is increasing with each orbit causing an

increasing smaller change in the eccentricity for each successive orbit. For Reference

Orbit #4 the inclination is effectively decreasing with each orbit causing an increasing

larger change in the eccentricity for each successive orbit. Figure 5.23 shows that an

increase in eccentricity and inclination (as is the case for Reference Orbit #3), and an

increase in eccentricity associated with a decrease in inclination (Reference Orbit #4)

* both induce a positive change in the argument of the periapsis over one orbital period.

Since the change in the argument of the periapsis is calculate by subtracting the final

value from the initial value, a positive change implies that the starting value for the

argument of the periapsis is greater than the value of the argument of the periapsis one

orbit later; therefore, both Reference Orbits #3 and #4 are experiencing a decrease in

.' the argument of the periapsis. The difference in the magnitude of these decreases is due

to the initial value of the inclination angle.

For Reference Orbit #3, the inclination value starts out being the critical

inclination. The effect of the increase of eccentricity is to decrease the value of the

": . critical inclination (see Figure 5.23). At the start of each orbital period, Reference Orbit

.. 43's inclination has increased over the starting value of the previous orbital period (see

Figure 5.30). The combined effect is that Reference Orbit *3's inclination becomes

slightly greater than the critical inclination angle. This causes the change in the

argument of periapsis over one orbital period to be slightly positise, thus causing the

,argument of the periapsis to slowly decrease.

Because of the initial value of Reference Orbit #s4's inclination ( = 90 degrees), the

irgument ot the periapsis wants to decrease at its maximum rate I he onlk parameter

hklding it back is the initial eccentricity 'This eccentricity increases " th time, and % Ith
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this increa>e in eccentricity, a positive change (as discussed aboe) in the argument ,t

the periapsis o:curs. This positive change in the argument of the periapsis enhances the

natural tendenc for an orbit of this inclination to decrease the argument of the

periapsis in \ alue. Thus, causing the cl:-!.ge in the argument of the periapsis to be

much greater than that of Reference Orbit #3.

At this %alue of the semi major axis and eccentricity, either the change in the

- argument of the periapsis or the change in the eccentricity over one orbital period can

- be set to zero. but not both. Figures 5.24 and 5.27 indicate that selecting an inclination

w khich drives the change in eccentricity to zero will result in a rapid change in the

- . argument of the periapsis. Thus, in the effort to control the argument of the periapsis,
,* there is no adxantage to driving only the change over one orbital period in the

eccentricity to zero.
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Figure 5.23 shows that the -alue of the critical angle of inclination is dependent

upon the value of the eccentr-i,,!. Howe',er, because the change over one orbital period

- of the eccentricity is non zero tor all the possible values of the critical inclination (see

Figure 5.22), the value of the critical inclination is itself changing over time, thus

' inducing a change in the argument of the periapsis. The change in the argument of the

periapsis is the slowest at tht' maximum allowable eccentricity (e = 0.3), and the fastest at

the minimum allowable eccentriclt,, ( = 0.03586336) . The question arises, for = 0.3 is

there a semi major axis value such that the change in the argument of the periapsis, the

eccentricity, the semi major axis, and the inclination are all equal to zero? If so, what

-are the characteristics of this orbit, and what effect does a change in eccentricity have

upon such an orbit? The next part of this analksis will focus upon these questions.

0 O\nalsis From 5 KM QviLu _ eosynchronous

Sweeping the value of the semi major axis from 5133 km to 20.000 km, for

inclination \.alues from I to 90 degrees, and noting the change o\er one trbital period otf

A.

-A..
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.-, the argument ot the periapsis. eccentricit,, inclination, and tenii major axis ields the

figures show n in Appendix F through H. (Note, for Mar,. geo,nchronous occurs at

2'(,400 km.) Although the inclination was ad',anced in increments of 5 degrees, an

increment of 10 degrees is sufficient to show the trend, and is used in presenting these

figures. The most interesting results occur at an inclination of approximately 70 degrees.

Figures 5.36 through 5.38 highlight these results.

At a semi major axis value of approximately 17,000 km, and an inclination of

approximately 70 degrees, Figure 5.36 shows the change in the argument of the periapsis

.ind the change in the eccentricity are both approximately zero.

. Further analysis showed that the zero change over one orbital period of these two

parameters (argument of the periapsis, and eccentricity) actually occurs when the semi

major axis is 17,190 km and the inclination is 69.9750 degrees. These parameters.

. together with the other associated input parameters define Reference Orbit #S, and are

shown in Table 5.5

Orbital Elements for Reference Orbit "5

* Table 5.5

Input km degrees . de- .r'e, .
Orbital gret,-"

Elements
for:

Ref 17,190.0 .3 69.9750 9(
Orbit =5_
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The time rate of change of the argument of the periapsis, the eccentricity, the semi

major axis, and the inclination for Reference Orbit #5 are shown by Figures 5.39

through 5.41. Figure 5.42 reveals that although the change in the argument of the

periapsis is zero over one orbital period, over an extended time the argument of the

periapsis decreases at the rate of 1.15 degrees per 90 days. This is because of the

combined effect of the change in the semi major axis, on the order of 0.1 km per orbit

(see Figure 5.40), and the 0.00026 degree per orbit change in the inclination (see Figure

5.41). From Figure 5.36 it can be seen that a small decrease from the semi major axis

value of 17,000 km will induce a slow decrease in the eccentricity and the argument of

the periapsis. Comparing Figures 5.36 and F.9 (see Appendix F) reveals an increase in

inclination will, at this particular value of the semi major axis, also result in a slight

decrease in the argument of the periapsis over time. Figures 5.36 through 5.38 show

* that as the semi major axis slowly decreases, the change in the argument of the

periapsis, the change in the eccentricity, the change in the inclination, and the change in

the semi major axis will progressively increase. Due to Reference Orbit #5's long

orbital period (approximately 20 hours) a 0.1 km decrease in the semi major axis per

orbit results in only an approximate 44 km decrease in the semi major axis per year.

Hence, although the change in the above orbital elements occurs at a progressively

increasing rate, the increase in rate is painstakingly slow. This accounts for the constant

slope of Figure 5.42.

Equation (5.1) shows the predominant effect of an increase in the semi major axis

is a decrease in the rate of change of the argument of the periapsis. Therefore, the slow

rate of Reference Orbit #5's change in the argument of the periapsis, when compared to

Reference Orbit #3, is not due entirely to any special effects of one change in an orbital
,"S,

*_ parameter cancelling the effects of the change in another orbital parameter. Figure 5.43

shows the change in the argument of the periapsis for an orbit of the same semi major

axis as Reference Orbit *5, but at 45 degrees inclination. A comparison of Figures 5.42

and 5.43 reveals Reference Orbit #5 experiences the same magnitude of change in one

'ear as the change experience over a 90 day period for the orbit in Figure 5.43. Thus

indicating Reference Orbit 05 is the more stable orbit.
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Appendices I through K show the effects of varying the eccentricity and semi

major axis upon the change in the argument of the periapsis, the eccentricity, the

inclination angle, and the semi major axis. Throughout these figures the input

inclination angle remains 70 degrees. These appendices offer trend information, and

because not ail combinations of eccentricity and semi major axis exist without causing

impact with the planet Mars, caution must be exercised in using these figures. From

Appendix I it can be seen that for eccentricities from 0.01 to 0.3 (see Figure 5.36), the

change in the argument of the periapsis over one orbital period has its zero value

between approximately 17,000 and 18,000 kilometers. For eccentricities between 0.01

and 0.6 the change in eccentricity will also become zero somewhere between 17,000 and

18,000 km. As previously mentioned, only when the eccentricity is 0.3 is there one

value of the semi major axis that simultaneously drives both values to zero. Further,

* Ibetween the semi major axis values of approximately 12,000 and 13,000 km there is

P" another region where the change in eccentricity over one orbital period becomes zero.
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,' ,Appendix J shows that at an eccentricity of 0.01 (Figure J.1) the change in

inclination is fairly insensitive to changes in the semi major axis from approximately

13,000 to 17,000 km. As eccentricity increases, Figures J.1 through J.6 show that the

change in the inclination becomes more sensitive to the value of the semi major axis;

however, although not exactly zero, the change in the inclination over one orbital period

remains relatively constant, and approximately zero in the semi major axis region of

17,000 to 18,000 km. Also, starting at an eccentricity of approximately .1, the change in

inclination over one orbital period is approximately zero between semi major axis values

of approximately 12,500 and 13,000 km.

In Appendix K, the change in the semi major axis over one orbital period appears

to be fairly sensitive to changes in both the semi major axis and the eccentricity.

Through out the range of values of the eccentricity there appears two regions where the

zero change in the semi major axis exist. These regions exist from a semi major axis of

approximately 12,200 to 13,200 kin, and approximately 16,000 to 18,000 km.

Atmospheric Drag

In the next phase of this analysis, atmospheric drag was introduced to the above

orbits. In all cases the atmospheric drag showed no appreciable effect over one orbital

period. Reference Orbit #3 was propagated over a one year period, both with and

without atmospheric drag. The results show that when in the presence of drag, the

eccentricity decreased by 0.00002986, and the semi major axis decreased by 798 meters

more than if atmospheric drag were not present. Reference Orbit #5 was also

propagated over a one year period. Here the results showed no appreciable effects when

in the presence of drag. This finding is not surprising given that the periapsis altitude

of Reference Orbit #5 is approximately 8,600 km. Because of the height of the orbits

* investigated, atmospheric drag effects are minimal.
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V. Conclusions and Recommendations

Conclusions

From the analysis section, two general classifications of results were found. The

first involves the characteristics of the orbital parameters effecting the control of the

argument of the periapsis, and the second involves the two regions of relative orbital

stability.

Characteristics of the Orbital Parameters Effecting the Control of the Argument of

the Periansis. For the MGCO phasing orbit none of the orbital elements (w, e, a, and i)

experienced a zero time rate of change over one orbital period when in the presence of a

6 X 6 gravity field. Yet, the values of the argument of the periapsis and the

N_ eccentricity are bounded. The first step of the analysis sought to discover the nature of

* the argument of the periapsis when the time rate of change of the argument of the

,. periapsis is zero over one orbital period. Through a careful selection of the inclination

angle, the change in the argument of the periapsis was driven to zero over one orbital

period. The results showed that a zero change in the argument of the periapsis has

* associated with it a non zero change in the eccentricity and the inclination angle (see

-. figures 5.15 through 5.18). These two non zero parameters induce a long period change

in the argument of the periapsis that is not bounded, but rather periodic. Further, from

Figure 5.23 it can be seen that the critical inclination angle has a range of values,

dependent upon the eccentricity of the orbit. From Figures 5.31 and 5.35 it is revealed

that the rate of change in the argument of the periapsis that is induced by the change in

eccentricity and inclination is, as in the case of a 6 X 0 gravity field, very sensitive to

the initial value of the critical angle of inclination. If the eccentricity is such that a
critical angle of inclination has a value that is close to 90 degrees, the rate of change

induced in the argument of the periapsis will be much greater than the case where the

critical inclination is near some lower value of inclination. Thus, driving only the

change in the argument of the periapsis to zero is not sufficient, when in the presence

% of a 6 X 6 gravity field, to control the argument of the periapsis.
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In the next step of the analysis, a value of the semi major axis and the inclination

was selected that allows the time rate of change over one orbital period of the

eccentricity to be driven to zero. Figure 5.24 shows that for this orbit there is a large

change over one orbital period in the argument of the periapsis; hence, driving the time

rate of change in the eccentricity to zero will not result in the desired bounded condition

of the argument of the periapsis.

Searching values of the semi major axis ranging from 5133 km to 20,000 km, for

inclinations ranging from I to 90 degrees lead to the discovery of an orbit in which both

the argument of the periapsis and the eccentricity are zero over one orbital period.

Figure 5.39 shows that the argument of the periapsis and the eccentricity are indeed

bounded; however, the semi major axis and the angle of inclination are not bounded.

Figures 5.36 through 5.38 indicate how the unbounded nature of the semi major axis and

the inclination effect the argument of the periapsis and the eccentricity. The results

indicate that in the presence of a 6 X 6 gravity field, control of the argument of the

periapsis is not gained by driving the short term perturbations in the argument of the

periapsis and the eccentricity to zero.

Regions of Relative Orbital Stability. From this analysis it is evident that driving

the short term perturbations of one or two of the orbital elements is not sufficient to

control the argument of the periapsis. Rather, the short term perturbations for the

change in the argument of the periapsis, the eccentricity, the semi major axis, and the

angle of inclination must all be driven to zero. Appendices F through K show that at

eccentricities from 0.01 to 0.6 an orbit that freeze the argument of the periapsis, the

eccentricity, the semi major axis, and the inclination does not exist. The best that can

be obtained is that the change in three out of four of the orbital elements can be driven

to approximately zero. Appendices F through K indicate that this takes place in two

distinct regions. The first being for a semi major axis from approximately 17,000 km to

18,000 kin, with an eccentricity ranging from approximately 0.01 to 0.6 and an

inclination value of approximately 70 degrees. Within this region the change in the

argument of the periapsis, the change in the eccentricity, and the change in the

inclination can be driven to approximately zero, while the change in the semi major axis

.0.
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prominently remains non zero. The second region exist for semi major axis values from

approximately 12,000 km to 13,000 kin, with an eccentricity ranging from 0.01 to 0.6

and an inclination value of approximately 70 degrees. Within this region the change in

* .the eccentricity, the semi major axis and the inclination can be made approximately

zero, but the change in the argument of the periapsis can not be driven to approximately

zero.

Atmosgheric Drag.. At the beginning of this research it was thought that the

locations for the frozen and stable orbits that might be found would be near the planet's

surface. This was not the case. In fact the orbits looked at were of sufficient height

that the atmospheric drag, even when propagated over a one year period had only very

slight effects on the semi major axis, and no discernible effects on the eccentricity.

Recommendations

"* Examining the MGCO phasing orbit reveals that the change in the argument of the

periapsis and the inclination are both negative (values increase over one orbital period),

while the change in the eccentricity and the semi major axis are both positive (values

decrease over one orbital period). Appendices F through H show that for an eccentricity

of 0.3, a region exist from a semi major axis of approximately 13,000 km to 17,100 km,

and an inclination value of approximately 35 degrees to 65 degrees where the same

characteristics of change in the argument of the periapsis, eccentricity, semi major axis,

and the inclination exist as exist for the MGCO phasing orbit. The next step in any

*follow on study ought to focus on this region. If this region does prove to have

bounded changes in the argument of the periapsis, then further analysis needs to be

made at other values of the eccentricity.

It is interesting to note that the above region, and the regions of relative orbital

stability described earlier occur between the moons of Mars, Phobos (mean distance of

4 9,380 kin) and Deimos (mean distance of 23,474 kin). Although the mass of these moons

are slight, they will have a perturbative effect upon the regions of relative orbital
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stability that needs further analysis Also, further analysis upon the regions of stability

needs to be performed taking into account resonance effects, solar pressure and third

body effects.
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* * Appendix A: Derivation of Poisson's and Laolace's Equations

Let the entire mass of the planet exist as a point in space- then. surround this

point with a "simple" surface S. The surface S is called simple if it has a finite area and

does not have points that intersect or touch other points on this surface. (see Figure A I)

Each small area of the surface (da) will have an associated normal vector fl. The

procedure is to determine how much of the acceleration (due to the mass v) is along the

normal of each infinitesimal area of surface, and then to integrate over the entire area

of the surface S. This will yield the amount of acceleration which mass V exerts over

the entire surface S (19:49).

• _ A T! L, 7'-E:

K0.

":..'Point Mass Enclosed by a Simple Surface (19:49)

, Figure A. I
9.
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Mathematically this process is modeled as:

GAI r(Al.1)
U,-fl(!a=4 r----rfla= GAcJ3 f d

-~ r -r

Since S is a simple surface, the value of the above integral will not be dependent

upon the size of the surface. Therefore, let S be a unit sphere. Then

afida = = -G A 41r 2  (AI.2)

=-CM 47t

Employing the Divergence Theorem of Gauss (12:440):

equation (A 1.2) becomes:

f d a = f 7. do.4c (Al .4)

where i, equals the volume enclosed by the surface S.

The above equation assumes the entire mass of the planet exists as a point mass

located at the center of a unit sphere. This restriction is removed by assuming that the

* mass of the planet is evenly distributed throughout the unit sphere by allowing:

m =/ pdt' (A 1.5)

where . equals the density of the mass. Equation (A 1.4) becomes:

f 7 and G=-4 Gfpdt (A 1.6)
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Because equation (Al.6) is independent of the size or shape of the volume, equate the

integrands to obtain:

V.a = -4 p (AI.7)

but

a ,7V (A 1.8)

so equation (A1.7) becomes:

7 -V -4nlCp (Al .9)

721/ = -41tGp

Equation (Al.9) is known as Poisson's Equation. This equation is only valid for

* regions within the planet's interior (5:108). Since the satellite will be orbiting outside

the planet's surface, P becomes zero, and equation (Al.9) becomes:

7 2V =0 (A 1.10)

Equation (AI.10) is Laplace's Equation.
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Appendix B Trigonometrig Manipulations

Identities

cosa+b = coscicosb-sinasinb (Bi.I)

sina+ b = sinacosb~cosasinb (BI.2)

cosia-b, = cosacosb*sinasinb (BI.3)

sin'a - b = slnacosb-cosastnb (BI.4)

•L csz-- (BI.5)
Sosacosb=- cosa+b cost a-b))

2 '

sinasinb= cosa'-bcosia+b). (B
2

SI, (B1.67)

sinacosb=2sin a+b,+sina-b. (BI.7)
2'

I,' (BI.8)

cosasinb= I si a+b)-sin(a-b)(

Euler's equations are:

e - e- (BI.9)
sina -

POQ + - (Bi1b1)
2

where j = ,7
0.

" =cosa jsina (BI.1 I)
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Binomial Expansions Qf cos m~ n~ sin mx

Let (3:2)

Icosmx= real part eI'mx* RE 9"~ (B2. I)

cosmx= RE e' 2 ' B22

casmx= RE cosx+jsnx"' (B2.3)

Noting that ( 1:11 )

a + br~a "-'b'(B2.4)

Equation (B2.3) can be written as:

cosmx = RE G(rn) om -sxsin ': (B2.5)

Let

simx = RE -je"' 5  (B2.6)

Then, equation (B2.6) becomes:

SInMx = RE co''snx(B2.7)

Expansions 9f Sin amx C'M b mx

Multiplying equtions (B 1.9), and (B 1.10) yields:
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. . a, . (B3.1a)
1,-11'rx o / C /, )

( jt-(b b d p/d

,hich becomes

a b _ - (133.2)(b - . -. 3.<.in .vcos .V o= 2a <, t, z-c d

where

.. b 2c 2d = cos ci b-2c -2d x- Isin'cz+ b- 2c -2d) (133.3)

In equation (B3.3), let a-L-m-2t-s and t-m-s (Born:5). Then (B3.3) becomes:

4. 0/ -b 2c 2d =cos L - 2t- 2c - 2d x+ jsin'L -21 -2c- 2d,.x (B3.4)
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Appendix C. The Inclination and Eccentricity Functions

Table C.A The Inclination Function

L m p FLmp (i)

2 0 1 3,
-sin -4 2

2 si 2 1
8

-sin t( I -cost)
4

-sin icost
* 2

21sin 2- I -cost)

-sin

203 )4

2S 2 (-c os

4630 0- n

3 0 2 15 3
-- sin -t Sint

16 4

3 0
-sin i

*Q 16

*3 I0 15 2-..sin t(I -cost)
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Table CI cont. The Inclination Function

L m p FLmp (i)

3 I 2 3(ot; - I

16 4

1.sln 1(1 - 3 cS) - I -,

3 53 s

3 3 0 15 3

8 .( I C S I)

3 2--ln cosI-) .

8

3 3 2 2s

-- SIn , I-2osC- -3 ', O8

3 23 i

33 - Co 1 3 2 cos 2 3 COS 1

8
- 3s 3c( I - 3os I-Jo

3 323 j3 S - 3('S 2 1- cos a

8

3 33'

40 0 4

4 0I I 2

4 32 16

',4,0 33 5 9 6

,'_- ____ %Il

-.

4.
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Table C.I cont. The Inclination Function

L m p FLmp (i)

4 0 4 3Ss4
128

, 4 1 0 35 3
- -- sin ,( -cost)

32

4"I.I35 3l I54 --sin ,( I 2cos,) - 15 ;InI( I - Cos1)
16 8

cost-s n ( -- s m I

4~ 4 16~~

16 8

4 4 35 si t5 - o t

32
4 0 4135 3

-sin I (I - cost )

32

4'4 I05 4in )8 8t~ ~ l l ~ - ( ( s

422105 21 2 Is 2
-sin I I -3cos i -- I - (o5s16 4

-423- sin icost(I - (os )- ( -Ios
88

4 2 4 - 0S si r,( - cos1) 2

32

0sin ( I cost)

16

4 3 105 2

--- sin, I - 3cos 2cos i
8

4 3 2 315
.. .Sin t((os4 8

4 3 3 105 Sin I - 3ro5 I 2ro ,

8
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, ' '.Table C.A cont. The Inclination Function

: L r p _ F L mP  (i)

4 3( I - cosi)

16

4 4 1 105 s 2

'I 

- -sn i(I -cos ) a

4 4 4

-sin
8

4 4 3 i-s sin2(l -cos()2

• P 4

16

-- si - t - - Pose)
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Table C.2 The Eccentricity Funtion (10:38)

L p q L p q GLU(e)

10 -2 2 2 2 0

2 16

2 0 2 2 2 -2 152 I 3 4
2 6

2 0 - 2 -1 71 23
2 216

22 1

- ,2 0 2-2 17 1 1t5 ,

22 6

2 -2 3 3 2 91 4

4 48

3 0 -1 3 27

3 00 1 _e 4J23

4

3" 0 -1 3 3 -I

3 0 -2 3 3 2 127 1 4

8 48

3 0 21 3 3

-S. - g * ,,.

8 64

S.-
S.

""3 0 13 3 - 1 5o -22o

•3 0 2 3 3 -2 127 2 _306Se,

J..- 5 - - 0 . .
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8 16

4 0 -2 4 4 2 1o2 p 4
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L p q L p GL22 (e)

4 0 -I 4 4 1 3 753

2 16

4 0 0 4 4 0 199 P

8

4 0 4 4 -1 13 7653
lg ~-o --- e . ..c """

2 16

4 0 2 4 4 -2 51 032 1

1 2 2

4 -2 4 3 2 3 2) 1 2

(4

4-1 4 3 | 1 33 2

*2 16

4 1 0 4 3 0 e 65 4
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2 16

4 1 2 4 3 -2 53 2 _79 4

4 24
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2 16
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ADoendix D Atmospheric Density

Figure DI shows a small element of unit volume of atmosphere.
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• ,Let the mass of the unit volume of atmosphere be denoted by ,r. Then (7:2):

rn N kf 
(D.I

where m = the mean molecular mass of the unit volume atmosphere

= the number of molecules of type i per unit volume

v.= the molecular mass of type i molecule

Since the unit volume element of the atmosphere is stationary (i.e. no thermal effects are

being considered):

Fu +, Fo =DO (DI.2)

where

'F F ",Pe  +4 dz - P z l (DI.3)

= p.-V'M(Adz g

• Applying equations (DI.3) to (DI.2) yields:

P -:"dz -P : =- Mdz.,g (DI.4)

dP -g NMCdz

where t' = the total pressure of the atmosphere at height z

= the area on the surface of the planet subtended by the unit volume of
. atmosphere

. = the acceleration due to gravity

*From the ideal gas law an expression for the total pressure can be written as (9:12):

V, ,RT (DI.5)

* where '" = the universal gas constant

= the temperature

= the volume
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But

- -- = p = d( nsity

So equation (DI.5) becomes:

P =pRT (DI.7)

Writing equation (DI.4) in terms of equation (DI.7) yields:

p zc:+: RT =-g, ZN.V,, dz (DI.8)

g YZ%!' A,
p zzdz g _V,

RT

2;g ZN, Al,
dp - - dz

* RT

Noting that for the unit volume element, v-i, dividing equation (DI.8) by equation

,. (DI.6), and applying equation (DI.I) yields:

dp g _ NA/, (D1.9)

RgZ RTdz

' '-' P V, N, T

RT cl

Taking the integral of both sides of equation (DI.9) yields:

,, -gm + (D I.0)
RT

When :-i,--ip.. As a result equation (DI.10) becomes:

p =gm (DI.l I)
,Q. 0.n

Taking the exponential of both sides of equation (DII) yields:

103

Taigeuto0D.



(D1. 12)

104



Aggendix E: Comouter Programs

Program Mars I

2 C This program calculates the geopotential field around
3 C the planet mars. it writes data into file MARSGRAV.DAT *

4 C in three colu~mns (corresponding to X,Y,Z coordinates)
5 C where
6 C X = Longitude
7 C Y = Latitude
8 C Z = the value of the Geopotentiat
9 C

10 CWritten by J. W. Foister, [ifI
11 C~ate 10 Sept 87
12 C
13 C357***********************~****
14 SNOFLOATCALLS
15 PROGRAM MARS1
16 REAL*8 C(19,19),S(19,19),LP(19,19),LAT,PNI,PI,
17 1 MU.,RP,R,LONG,V,PT(91,91),B
18 C357****************************
19 C C zThe nondimensional c coefficient to the gray model
20 C S zThe nondimensional s coefficient to the gray model
21 C LP The values of the Legendre, and associated Legendre*
22 C polynomials
23 C LAT The Latitude*
24 C PHI The sin of the latitude
25 C PI The classic irrational number
26 C MU The universal gravitational constant multiplied by*
27 C the mass of the planet Mars
28 C RP =the equatorial radius of Mars
29 C R The distance from the center of Mars at which it is*
30 C desired to calculate the geopotential
31 C LONG = The Longitude

Irv32 C V = An intermediate value of the geopotential (calcutat*
33 C ion not yet complete)
34 C PT = The value of the geopotential at a particular point*
35 C B = Intermediate step in calculating geopotential
36 C357****************************
37 C
38 C
39 C
40 INTEGER i,j,k,m,n
41 C234567***** Determine/Set the intial values *********

42 PI=4.D0*DATAN(1.D0)
43 MU=4.2828287D4
44 RP=3393.4DO
45 R=3893.4D0
46 LAT=-90.D0
47 LOI0D
48 V=0.DO
49 C234567
50 OPEN(1,FILE=IMGRAVI,STATUS='OLD')
51 C234567 This file contains an 18 by 18 gravity model of Mars
52 C Source: Jet Porpulsion Laboratory, EM 312/87-153
53 C 20 April 1987
54 C234567
55 C(1,1)=1.00
56 S(1,1)=0.DO
57 C(2,1)=0.00
58 S(2,1)=O.DO
59 C(2,2)=0.00
60 S(2,2)0O.DO
61 00 10 i=3,19
62 DO 20 jzl,i
63 READ(1, (25X,F15.13,15)(,F1S.13)') C(ij),S0i.I)
64 20 CONTINUE
65 10 CONTINUE
66 C234567
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,"67 CLOSE(1)
68 OPEN(1,FILE=IMARSGRAV.DAT')
69 C This file will contain this programs output
70 C234567********** ******* ************ tan at ** a. ata*ta * *at *.
71 C Start with the latitude and longitude established in Line 52 *
72 C and 53 of this program. Then for each value of latitude cat *
73 C ulate the Legendre polynomials, and step from 0 longitude to *
74 C 360 by 4 degree increments calculating the geopotential as *
75 C you go. When calucLations are complete for a particular tat
76 C itude, increment latitude by 2 degrees and start all over agai*

78 WRITE(*,150)
79 150 FORMAT(20X,'LAT =-90 DEGREES LONG = 0.0 DEGREES')
80 LAT=LAT*(PI/180.DO)
81 DO 30 i=1,91
82 PHI=DSIN(LAT)

84 c collect all the legendre poly. assosicated with the latitude
85 C This subroutine was written by J. H. Kwok as part of ASAP
86 CALL LEGEND(18,18,PHI,LP)
87 C234 6 7 * * ******* tt** * t**********t*
88 c now establish a particular latitude and step through all
89 c values of longitude for that Latitude
90 DO 60 j=1,91
91 V=O.DO
92 DO 70 n=1,19
93 DO 80 n1,n
94 B=C(n,m)*DCOS((m-1)*LONG)*S(n,m)*DSIN((m-1)*LONG)
95 V=LP(n,m)*B+V
96 80 CONTINUE
97 V=((RP/R)**(n))*V

98 70 CONTINUE
99 PT(i,j)=-(MLI/R)*V
100 LONG=LONG*(180.DO/PI)+4.DO
101 WRITE(*,220) LONG
102 220 FORMAT(40X,'LONG = ',F30.15)
103 LONG=LONG*(PI/180.DO)
104 60 CONTINUE
105 LONG=O.DO
106 LAT=LAT

t
(180.DO/PI) 2.DO0

107 WRITE(*,230) LAT
108 230 FORMAT(2OX,1LAT = ',F30.15)
109 LAT=LAT*(PI/180.DO)
110 30 CONTINUE
111 C234567******** Routine to write data to data file ****t..

112 LAT=-90.DO
113 LONG=O.DO
114 DO 90 i=1,91
115 LONG=O.DO
116 DO 100 j=1,

9
1

117 WRITE(*,200) LAT,LONG,PT(i,j)
118 WRITE(1,200) LAT,LONG,PT(i,j)
119 200 FORMAT(1X,F30.15,1X,F30.15,1X,F30.15)
120 LONG=LONG+4.DO
121 100 CONTINUE
122 LAT=LAT+2.DO
123 90 CONTINUE
124 C234567
125 STOP
126 END

W
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Data File MGRAV, Mars Gravit M

The following is an 18 by 18 gravity model of Mars (see reference 13).

L m S

2 0 -.1960454460-02 .0000000000+00
2 1 0000000000+00 .O00000000000
2 2 -.5473268560-04 .313950595D-04
3 0 -.314492574D-04 .0000000000+00
3 1 .4476862300-05 .2689599630-04
3 2 -.5579151480-05 .289455551D-05
3 3 .484500981D-05 .360651187D-05
4 0 .1889436780-04 .0000000000+00
4 1 .349376617D-05 .3989913020-05

a 4 2 - .2076797910-06 -.219936945D-05
4 3 .4174519330-06 .162519077D-07
4 4 -.3614285690-08 -.2765218790-06

5 0 -.266924852D-05 .0000000000+00
5 1 .8947665310-07 .3085264560-05
5 2 -.7201937260-06 -.2932882060-06
5 3 .832996054D-07 .149487871D-07

5 4 -. 3851685840-07 -. 2075958050-07
5 5 - .1092195270-07 .9195655830-08
6 0 .1340756980-05 .0000000000+00
6 1 .271525423D-05 -.2462538330-05
6 2 .2130671020-06 .1814108190-06
6 3 .223152945D-07 .445497372D-07

% 6 4 .483156237D-08 .823473177D•08
A' 6 5 .1608795850-08 .1237366850-08
,- 6 6 .6575375160-09 .228632415D-09

7 0 .953741475D-05 .000000000000
7 1 -.2060014120-06 .7635813990-06
7 2 .2503700550-06 .191207892D-07
7 3 .867979547D-08 - .2459683980-07
7 4 .4384927560 -08 -.?197301410-08
7 5 -. 173195787-09 - .680670137D-09
7 6 - .2216827490-10 - .1223804710-09
7 7 .1195282330-10 -.4414398780-10
8 0 -.193679382D-05 .000000000000
8 1 - .252155307D-06 -.4408715080-07
8 2 .198283464D-06 -.222818552D-07
8 3 -. 7444920890-08 .1682738420-07
8 4 .180188344D-08 .8706060830-09
8 5 -. 4163747480-09 -. 288259952D-09
8 6 -.2850945400-10 -.4261122960-10
8 7 -.3591076480-11 .831516583D-11
8 8 .1316938280-13 -.9079983980-12
9 0 .2979733160-05 .0000000000+00
9 1 .792173764D-06 -. 1735652930-06
9 2 .811195624D-07 .3715320240-07
9 3 -.111353505D-07 -.1789806460-07
9 4 -.3932024540-09 .159736275D-08

- 9 5 -. 2080644420-09 -. 1810032880-09

9 6 .1301345170-11 .3465187820-11
9 7 -.239656251D-12 .1551425180-11
9 8 .8466364120-13 -. 134516525D-13
9 9 -. 1291591900-12 .6694058390-13
10 0 " .2145871400-05 .000000000D+00
10 1 .5051756790-06 -.4670746150-06

4 10 2 .2169739070-07 -.4632491300-07
- 10 3 .3679579030-08 .9173488320-08

10 4 .5385421860-09 -.5850133600-09
1e 10 5 .3924178420-10 -. 356486582D-10
10 6 .763183570- 11 -.2882675830-11
10 7 -. 1207609790-12 .1417992880- 12
10 8 .1067247190-12 .120979573D-12
10 9 - .254490861D-13 -.308310394D-13
10 10 -.522230377D-14 .280057675D-14
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, " , I11 0 -. 2762977430- 05 OOOOOOOOOD+00

11 -.4221195860-06 .401987552D-06
1- .2739034610-07 -.4942071650-07
11 3 .679530071D-09 -. 524985S717D-08
11 4 -. 4425696600- 09 -. 343286924D09o
1, 1 5 .85067S1900- 11 .155014.6690-10

11 10 .254299637D-15 .1922004630-14

11 11 .4087416430-16 *.187645208D-15
12 0 .7245096500-06 .0000000000+00
12 1 .665441647D-06 -.7830224460-07
12 2 .4128146200-07 .176086232D-07
12 3 -.2285234860-08 -.2599969390-08
12 . -, 138990748D-09 ..3248031000-11
12 5 .4301416080-10 -.2005786980-11
12 6 -.281462344D-11 -.179033360-11
12 7 .4225581350-13 .4052149990-12
12 8 -.6068102800-14 .1279443980-13
12 9 .401661164D-14 -.440694307D-14
12 10 .184496962D-15 .354385774D-15
12 11 .4765389990-16 -.7860628250-16
12 12 -.295776875D-17 .802086213D-17
13 0 -.543198032D-05 .0000000000+00
13 1 - .105510215D-08 .8770208W -09
13 2 .1115885050-07 -.197347899D-07
13 3 .3135528130-08 .2123058840-08
13 4 .1418926900-09 .825861835D-10
13 5 .2135356910-10 -.5850772210-11

P. 13 6 -.7581287240-12 -.192699340D-11
13 7 -. 1937441730-12 .936949857D-14
13 8 -.8892082760-14 -.1305984390-14
13 9 .1618950470-14 .165232772D-14
13 10 .248001154D-16 -.1269716880-15
13 11 .1387910590-16 .1043564500-17
13 12 -.639743167D-18 - .7962085360-18
13 13 .1072635360-18 .3407157580-18
14 0 .4787721590-06 .000000000D+00

S 14 1 -.3324269800-06 .297621694D-06
4. 1 2 -.4350889960-08 -.3568726500-07
14 3 .1698916260-08 -.207647667D-08
14 4 .1399193340-09 -.2550998360-10
1 14 5 -.4301486450-11 -.1540726990-10
14 6 -.5252841020-12 .574060758D-12
14 7 .171152471D-13 .3324810280-13
14 8 .5488985050-16 -.1351051530-14
14 9 .277704867b-15 .168216163D-15
14 10 .3964659380-16 -.3116379890-16
14 11 -.4976918860-17 .1063799190-17
14 12 -.3906905330-19 .1640387190-18
14 13 .217992662D-19 .9346485600-19
14 14 .132110275D-19 -.559726427D-20

* 15 0 -.1482681060-05 .000000000000
is I - .104584515D-06 .2274121190-07
15 2 .4770299890-08 .595709129D0-09
i5 3 -.6723849000-09 -.240384972D-08
15 4 -.260831862D-10 -.9842583030-10
15 5 -.1546062260-11 -.1109210130-10
15 6 -.5370486850-12 .415150164D-12
15 7 .4236768620-13 .428137862D-13
15 8 .3591668230-14 -.8565966020-15
15 9 ..9995211870-16 .3190625430-17
i5 10 ,.1044191700-16 .4807197440-18
15 11 ..1013541490-17 .901416487D-18
15 12 .1259155320-18 .1234481480-18
15 13 -.1070311580-20 .778559537D-20
15 14 ,.2358221670-20 -.306632691D-20
15 15 -.4368633390-21 .7752937740-23
16 0 .210341751D-05 .0000000000+00
16 1 .2410731710-06 -.1104573640-06
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16 2 -.182440905D-08 -.303832411D-07
16 3 .857232052D-09 -.4440783560-09
16 4 -.682555079D-10 -.510326275D-10
16 5 .4337932700-11 .302290752D-11
16 6 .136323587D-12 -.1048918W6-12
16 7 -.121384042D-13 .1128507380-13
16 8 -.2449457190-16 -.621086011D-15
16 9 .7836390450-16 -.183450204D-16
16 10 .253503225D-17 .524889864D-17
16 11 -.2403624450-18 .9336121860-19
16 12 -.256512352D-20 .3465394460-19
16 13 -.497431552D-20 .2210656460-20
16 14 .1047312890-21 -.922733087D-21
16 15 -.115474494D-21 .4490297430-23
16 16 -.1325081260-22 .7365311390-24
17 0 .6325887220-06 .O0000000+00
17 1 -.3525205300-06 .8042027410-07
17 2 -.6472753590-08 .3161347600-08
17 3 -.3682776400-09 -.5969128360-09
17 4 -.1628886840-10 .635013369D-10
17 5 .317766095D-11 .589913917D-13
17 6 .1784002880-12 .362066925D-12
17 7 .222378189D-13 -.4428599830-14
17 8 -.858389410D-15 -.1054987860-14
17 9 -.8362493380-16 -.300267024D-16
17 10 .163218614D-17 .3051858740-17
17 11 .4015787430-21 .185824464D-19
17 12 .3460967700-21 .193848107D-19
17 13 .1146153150-21 -.845205020D-21
17 14 -.5062557860-22 -.8453673360-22
17 15 -.1841953900-22 .681759100D-23
17 16 .2123025750-23 -.1484794340-23
17 17 .3325187130-24 .447497480D-25

2. 18 0 .7947868300-06 .0000000000+00
. 18 1 .142558531D-07 -.997992732D-07

18 2 .6259823980-08 .172674827D-07
18 3 -.1391551100-11 .2428541180-10
18 4 .267161837D-11 .567965311D-10
18 5 .196738667D-11 -.943658879D-12
18 6 -.104261777D-12 -.9476945160-13
18 7 -.7087292560-14 -.5052676400-15
18 8 .3394086320-15 -.579459532D-15
18 9 -.3431229250-16 .186741541D-16

18 10 .1494027490-17 .4117738950-17
18 11 .2921462700-19 .3232016240-19
18 12 .2406297770-20 -.8911442160-20
18 13 -.4479267680-22 -.3993932500-22
18 14 .5185774320-23 -.679543490D-22
18 15 .742435657D-24 .660693902D-23
18 16 .6375948030-24 .194527232D-24
18 17 -.4421554090-26 -.1269567390-24
18 18 .1844290130-25 .110393602D-25

04
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Program Ome_

."b ~ ~~ C23467t*********tee***t****ett*ttt***t*************

2 C Omega is a program that finds the roots to delta omega *
3 C where the equations for delta omega (change in arg. of the *

... 4 C periapsis) are found in THE MOTION OF A SATELLITE IN AN AXI- *
5 C SYMMETRIC GRAVITATIONAL FIELD, by R. H. MERSON. As found in *
6 C the Geophysical Journal Vol 4, 1961, p.17 . This program finds*
7 C the roots of delta omega as a function of f, f=(sin i)**2. *
8 C The primary equation is: delta omega = cf**3+bf**2+af~d=O. *
9 C Where a,b,c, and d are constants depending on the semi major *

10 C axis and the eccentricity *
11IC *
12 C WRITTEN BY J.W. FOISTER, III *
13 C DATE AUG 5 1987 *

1 4 C
15 C .(1) =*
16 C J(2) = C20 coefficient
17 C J(3) =
18 C J(4) = C40 coefficient
19 C J(5) =*
20 C J(6) = C60 coefficient
21 c234567********************************************************
22 SNOFLOATCALLS
23 PROGRAM OMEGA
24 C
25 C
26 C234567********** DEFINE THE VARIABLES **************************
27 REAL*8 J(6),LATABCDEF(3),ECDLTAPQRX(3),YTHETA(3),
28 1 SEMI,PI,W(3),TP,AHLD
29 C

% 30 C
31 C234567
32 INTEGER i,k,COUNTER
33 C
34 PI=4.DO*DATAN(I.DO)
35 R=1.DO
36 C234567"****** Following values are for the planet Mars *******
37 J(2)=-0.1960454460-02
38 J(4)=0.188943678D-04
39 J(6)=0.1340756980-05
40 C
41 OPEN(1.FILE='LPTI)
42 200 FORMAT(1X,'f = 1,F30.15)
43 210 FORMAT(1X,'f',il,- = ',F30.15)
44 C
45 C234567"****** INPUT THE DATA ***********************************
46 WRITE(*,100)
47 100 FORMAT(1X,'Semi Major axis equals.., in KMs...(F30.15) ....',\)
48 READ(*,'(F30.15)1) SEMI

% 49 WRITE(0,105) SEMI
A 50 105 FORMAT(1X,'The Semi Major axis in Km is ',F30.15)

' 51 WRITE(*,105) SEMI
52 C234567 convert from KM to Du's this is for a Mars orbit
53 SEMI=SEMI/3393.4
54 C234567
55 WRITE(*,110)
56 110 FORMAT(lX,'Eccentricity equals ... (F30.15) ...... 1,\)
57 READ(-,'(F30.15)') EC
58 AHLD=(3.DO/2.DO)

-' 59 TP=(2*PI)*(SEMI**AHLD)
60 C234567 ** *** This converts from Mars Time Units to Minutes *
61 TP=TP*(15.9197403800)
62 C
63 WRITE(*,120) SEMI,TP,EC
64 WRITE(1,120) SEMITPEC
65 120 FORMAT(1X,'For the Semi Major axis - 1,F30.15,
66 1 the period (in minutes) is '.F30.15,/,
67 2 and Eccentricity ',F30.15)
68 C234567******* CALCULATE THE VALUES OF THE COEFFICIENTS *
69 LAT=SEMI*(I"EC**2)

"'P,



70 C SEMI semi major ax is, LAT Semi tat.,S reCtU.ai
-71 j(l)=J(4)*((R/LAT)**4)

1 72 j(3)=J(6)*((R/LAT)*6)

?.. C A through D are coefficients described in tine 8 of this program

? 6 A=A.J(1)l((930.DO/32.DO).lQ45,DO/3.DO)EC**2)
77 A=A.J(3)*(( 33600.DO/320.OO) ((22575.DO/64.O)EC-*2)

*.78 1 ((14175.D0128D0)*EC*4,))
79 A=A.J(5)*((855 .D0148.DO) ((27.DO/32.DO)*EC*2))
80 C23-567
81 B.j(l)*((-735.OO/32.DO)-((2835.00/128.D)EC*2))
82 B84j(3)*((541800.O/256.DO)-( (34335O.DO/512.DO)*EC**2)
83 1 +((5l975.D0/256.DO)*EC*4))

*8d. S=B+J(5)( 4OO5.OO/192.DO)-((135.DO/128.DO)*EC**2))
*85 C234567

86 C=J(3)*((1247400.O/10240.DO).((381150.DO/512.DO)*EC*-2)
87 1 -((225225.DC/2048.O)EC**4))
88 C234.567
89 D=3.DO*J(2)*((R/LAT)*2)J(1 )*((-240.OO/32.DO)
90 1 .((270.DO/32.DO)*EC**2))+J(3)*((4200.DO/320.00)
91 2 *( (3150.00/64.DO)*EC*2).(( 1050.DO/64.DO)*EC**4))
92 3 -J(5)*((63.OO/48.DO)*EC**2)
93 C234567

-94 P=((A/C)-((BIC)*2)/3.00)
95 0=((2.DO/27.DO)*((B/C)**3) ((A*B)/(3.00*C**2))+(D/C))

*96 C234567
97 OLTA..(-27.00*Q**2)-(4.DO*P**3)
98 C

* 99 IF (OLTA .LT. 0.0) THEN
100 C one real root exist
101 GOTO 500
102 ELSEIF (OLTA .GE. 0.0) THEN
103 C att roots are real, if dtta =0 then two of the roots are the same

. 104 c if dkta > 0 then alt three roots are different
105 GOTO 700
106 ELSE
107 ENDIF
108 C234567****** NEWTON - RAPHSON METHOD "~~

109 500 COUNTER=O
110 C234567set initaL guess of f value

112 503 IF (COUNTER .GT. 100) THEN
- .113 WRITE(1,505) COUNTER

114 505 FORMAT(X,After l,i3,1 iterations')
115 F(1)=X(2)
116 GOTO 800
l17 ELSE
118 ENOIF
119 W(1 ).(200*C*X(1)**3),(B*X(1)**2).D
120 W(2).(3.DOCX(1)*2)(2.DO*S*x(l))+A
121 IF (W(2) -EQ. 0.0) THEN
122 WRITE(1,510)
123 510 FORMAT(1X,'First derivative *0, program stopped')

*124 GOTO 900
125 ELSE
126 ENOIF
127 c234567

130 x(3)=OABS(x(3))
131 IF (x(3) ALE. 1.0-12) THEN
132 Cthe root to the equation is X(2)

*133 F(1)=X(2)
1%134 COUNTER=O

135 GOTO 800
136 ELSEIF (DoAs(x(3)) .GT. 1.0-12) THEN
137 Cthe root has Yet to be identified
138 COUNTER=COtUNTER.1
139 x(l)=YC2)

-,140 GOTO 503
-141 ELSE

%.
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1..? END IF
1.3 C2M.67****** ROUTINE TO FIND CUBIC ROOT

1'.. 700 TNETA(1)=(3.DODSORT(3)0Q)/(2.D*P*DSORT( P))
1.5 TIETA(1)=(DACOS(THETA(1)))/3.DO
1 .6 ThETA(2)THETA(1)e((2.OO*PI)/3.O)
1..7 THETA(3)=TMETA(1) ((2.DO0PI)/3.DO)

.8 E=DSORT((-4.DO*P)/3.O)
1.9 X(1)=E*OCOS(THETA(l))
150 Xc2).E*DCOS(THETA(2))
151 X(3)=E*DCOS(THETA(3))
152 F(1 )=x(1 ).(s(3.DO0C))
'53 Fc2)=X(2) (B/(3.D0*C))
15'. F(3)=X(3),(B/(3.DO0C))
155 DO 10 izl,3
156 WRITE(1,210) ,FOi)
157 WRITE(,210) iFO)
158 10 CONTINUE
159 GOTO 900
160 C2 56 * * * * * * * * ** * * *
161 800 WRITE(1,810) F(l), X(3)
162 WRITE(*,810) F(l), X(3)
163 810 FORMAT(lx* The root is 1,F30.15,/,, The error is 1,F30.15)
164 c 3 5 7 

t  4  t  
'~

165 900 STOP
.1~166 END

.112
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A, ' Program Cagmega

I ~1 C234567 * *
****

' * '
**************

* *
**

* * "

2 C CAPMEGA is a program that finds the root to delta cap *

3 C omega, the equation delta cap omega being defined in *

4 C The Notion of a satellite in an Axi-synimetric Gravitational *
5 C Field, by R. H. Merson . As found in the Geophysical JournaL*
6 C Vol 4, 1961, p.17. This program finds the roots of delta
7 C omega as a function of f, where f=(sin i)**2. The primary *

8 C equation is :delta cap omega =Af**2 + Bf + C =0. Where *

9 C A,B,and C are constants depending on the semi major axis and *
10 C the Eccentricity
11 C *

% 12 C WRITTEN BY J.W. FOISTER, III
13 C DATE AUG 21 1987 *

14 C *
15 C J(1)
16 C J(2) = C20 coefficient
17 c J(3) =
18 C J(4) = C40 coefficient *

19 C J(5) *
20 C J(6) = C60 coefficient *

21 c234567***************************************
22 SNOFLOATCALLS
23 PROGRAM CAPMEGA
24 C
25 C
26 C234567********* DEFINE THE VARIABLES ****************************

* 27 REAL*8 J(6),LAT,A,B,C,D,E,F(3),EC,DLTA,P,Q,R,X(3),Y,THETA(3),
28 1 SEMI,PIW(3),TP,AHLD,RP

29 C
'" 30 C

31 C234567
32 INTEGER i,k,COUNTER

% 33 C
34 PI=4.DO*DATAN(I.DO)
35 R:I.DO
36 C234567
37 J(2)=-0.1960454460-02
38 J(4)=0.1889436780-04
39 J(6)=0.1340756980-05
40

41 OPEN(1,FILE='LPT1')
42 200 FORMAT(X,'f ',F30.15)S43 210 FORMAT(IX,'f,i,

'  
= IF30.15)

44 C
45 C234567******* INPUT THE DATA *****************

46 JWRITE(*,100)
47 100 FORMAT(1X,'Semi Major axis equals... in KMs...(F30.15) ....
48 READ(*,'(F30.15)') SEMI
49 WRITE(*,110)
50 11)
51 READ(*,'(F30.15)') EC
52 C234567 find the Radius of the Periapsis
53 RP=SEMI*(l"EC)
54 WRITE(*,105) SEMI,RP
55 WRITE(1,105) SEMI,RP

. 56 105 FORMAT(/,1X,'The Semi Major axis in Km is ',F30.15,/,
57 I 1 The Radius of Periapsis in Km is 1,F30.15)
58 C234567 convert from KM to Du's this is for a Mars orbit

% 59 SEMI=SEMI/3393.400

60 C234567
61 AHLD=(3.00/2.0O)
62 TP:(2.DO*PI)*(SEMI**AHLD)
63 TP=TP*(15.91974038DO)
64 C
65 WRITE(*,120) SEMI,TP,EC
66 WRITE(1,120) SEMI,TPEC
67 120 FORMAT(1X,'For the Semi Major axis = ',F30.15,
68 1 the period (in minutes) is ',F30.15,/,
69 2 and Eccentricity 1 ,F30.15)

'A.'
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* p.70 C234567**** CALCULATE THE VALUES OF THE COEFFICIENTS *~

71 LAT=SEMI*(1.00-EC**2)
72 C

74 .(3)J(6)*((R/LAT)**6)
75 J(5)=(J(2)*2)*((R/LAT)**4)
76 C234.567
77 A=((-51975.00/1024.00)*EC**4)-(C1732S.DO/128.DCi"t.*2)
78 1 -(3465.00/128.00)
79 A=J(3)*A
80 C
81 B=J(3)*(((14175.00/256.O0)*EC**4),((4725.DO/32.DO)*EC**2)+
82 1(945.DO/32.D0))+(J(1)*(((.315.D0/32.00)EC**2)(105.D/16.uO)
83 2 )),(J(5)*(((-45.00/32.00)*EC**2).(15.DO/2.DO)))
84 C
85 C=J(3)*(((1575.DO/128.O0)*EC**4)-((-525.DO/16.DO)*EC**2)
B6 1 -(105.DO/16.D0))+(J(1 )*(((45.DO,8.0O)*EC**2),(15.D0/4.D0)))
87 2 +(J(5)*(((-3.0O/8.DO)*EC*2)+(9.DO,8.00)))
88 C~c+(j(2)*((R/LAT)**2))*(-3.O/2.DO)
89 C234567
90 W(1)=(B**2)-(4.DO*A*C)
91 IF NO() .LT. 0.0) THEN

-r92 WRITE(*,300)
93 WR[TE(1,300)
94 300 FORPAT(X,'THE ROOTS ARE IMAGINARY!')
95 W(2)=.B/(2.D0*A)

496 W(3)=W(1)/(2.DO*A)
.597 WRITE(*,310) W(2),W(3)
* 98 WRITE(1,310) W(2),WC3) ~ 3.5

99 310 FORMAT(1X,1ROOT I1 ,F30.15,1 + ',3.5
100 WRITE(*,320) W(2),U(3)
101 WRITE(1,320) W(2),W(3)
102 320 FORMAT(1X,'ROOT 2 = ,F30.15,1 i 1,F30.15)
103 GOTO 900
104 ELSE
105 ENDIF
106 C

108 F(2)=(.9.DSaRT(W(l)))/(2.DO*A)
109 WRITE(*,330) F(1),F(2)

5110 WRITE(1,330) F(1),F(2)
Il1 330 FORMAT(lX,'ROOT 1 1,F30.15,/,' ROOT 2 =',F30.15)
112 C234567

*113 900 STOP
114 END
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Pr yrai Dsem

I C234567*****....***********S*
2 C This program solves for the change in the semi major axis, *

3 C and the change in the eccentricity over one orbital period *
4 C with the change due solely to air drag. Equation 4.14 and *
5 C equation 4.11 from Desmond King-Mete's book, THEORY OF *

6 C SATELLITE ORBITS IN AN ATMOSPHERE are used as the
7 C expression of change in semi major axis, and eccentricity
8 C These equations include integrals, and therefore requrires *

9 C an integration. A standard 8th order Gaussian-Legendre
10 C quadrature method is used to perform this integration.
11 C The interval of integration (from 0 to 2 pi) witt be broken*

12 C up into four intervals (from 0 to pi/2, from pi/2 to pi *

13 C from pi to 3pi/2, from 3pi/2 to 2pi) and the Gaussian -
14 C Legendre quadrature will be applied to each interval. This*
15 C will improve the accuracy of this routine. *
16 C

17 CWritten by J. W. Foister, III
18 C *

19 CDate 22 Sept. 1987 *

20 C *
21 C234567 ************************************************
22 SNOFLOATCALLS
23 PROGRAM OSEMI

* 24 C
25 REAL*8 A,AK(4),EK(4),PI,RHO,RHOO,DELTA,F,INCL,RPO,VPO,
26 1 S,CDMECHMMUWDA,DE,E,YE,XE,INT
27 C234567*****OEFINITION OF VARIABLES

*
-

***** *
"

**
* "

**** **** ***
"

*
"

**

28 C A = intial value of the semi major axis (km)

29 C AK(4) = the Gaussian quadrature coefficients *

30 C EK(4) = the values of E, the independent varialbe where *
31 C f(E) =. *

32 C PI = the irrational numzber pie. *

33 C RHO = the density of the atmosphere in (kg)/(km**3) *
34 C RHO0 = the reference density of the atmosphere *

35 C DELTA = the surface area of the satellite times the coeff. *

36 C of drag divided by the mass of the satellite, with '

37 C the entire quanity multiplied by a correction *
38 C factor that converts the velocity of the satellite *

39 C wrt the center of the planet, to a velocity wrt the*
40 C atmosphere in which it is moving. (F) *
41 C RPO = the reference periapsis (km) *

42 C F = the conversion factor that changes the velocity '

43 C term from one relative to the center of the planet *

44 C to one relative to the atmosphere *

45 C INCL = the angle of inclination (radians) *

46 C VPO = the velocity of the satellite at RPO (km)/(sec)
47 C S z the reference area of the satellite (km*2) *
48 C CD = the coefficient of drag
49 C M z the mass of the satellite (kg) *

50 C EC = the eccentricity *
51 C H = the scale height (km) *

52 C MU = the gravitational constant times the radius of the *

53 C planet (km**3)/(sec*2) *

54 C W = the rotational velocity o! the planet (rad/sec) *

55 C DA = the change in A
56 C DE = the change in Eccentricity
57 C YE = the integrand for change in A equation
58 C XE = the integrand for change in Eccentricity equation *

59 C DE = the change in eccentricity over one orbital period *

60 C INT = the constant need inorder to perform the needed '

61 C change in varialbe required by the interval
62 C23456" ************* '*************************
63 C

64 INTEGER i,j,k
65 C
66 C
67 DATA EK/.9602898600,.7966664800,.52553241D0,.1

83434 64
D0/

68 C
69 DATA AK/.10122854DO,.22238103DO,.31370665DO,.

3
62

68 378
00/
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70 C
71 OPEN(1,FILE=ILPT1I)
72C
73 C234567*** *--*-**DEF INE THE CONSTANTS****** ** *****.**
74 PI=4.DO*DATAN(1.00)
75 RHOO=3.30-3
76 S=1.0-5
77 CD=2.DO
78 M=1000.00
79 H=14.13867049D0

A,80 RPO=3593.400
81 MU=4.2828287D4
82 VPOzDSORT(M4U/RPO)
83 W=(4.06l2498030.3)*(PI/l8O.D0)
84 INCL=(45.DO)*(PI/180.DO)
85 F=(l.DO.(RPO/VPO)*WJ*DCOS(INCL))**2
86 A=5133.428571D0
87 EC=.3D0
88 DELTA=(F*S*CD)/M
89 WRITE(*,500) PI,RH00,S,CD,MH RPOMU
90 WRITE(1,500) PI,RHOO,S,CD,MHRP0 MU
91 500 F0RMAT(lX,'PI= ',F30.15,1 RHOO= 1,F30.15,/
92 1 ,. S1,F30.15,1 CD= ,F30.15,/,
93 2 1 M= 1,F30.15,1 H= ,F30.15,/,
94 3 'RPO=',F30.15,1 MU= 'F30.15)
95 WRITE(-,600) VPO,W,INCL,F,AECDELTA
96 WRITE(1,600) VPO,W,INCL,F,A ECDELTA
97 600 FORMAT(1X,'VPO= ',F30.15,1 W= F30.15,/,
98 1 1INCL=I,F30.15,1 F= .F30.15,
99 2 1 A = 1,F30.15,1 EC=I,F30.15,/,
100 3 1DELTA = 1,F30.15)

* ~~~~~~~101C246****** ******* ****** *.
102 DA=O.O
103 DE=0.DO
104 C234567******determine theinev1***********
105 00 10 i=1,4
106 IF (i .EQ. 1) THEN
107 INT=1 .0
108 ELSEIF (i .EQ. 2) THEN
109 INT=3.DO
110 ELSEIF (i .EQ. 3) THEN
ill INT=5.DO
112 ELSEIF (i .EQ. 4) THEN
113 INT7.O
114 ELSE
115 ENDIF
116 C234567********start the quadrature************************
117 DO 20 j=1,4
118 Do 30 k=1,2
119 IF (k .EQ. 1) THEN
120 E=(PI/4.DO)*(EK(j).INT)
121 ELSEIF (k .EQ. 2) THEN
122 E=(PI/4.0O)*(.EK(j)+INT)
123 ELSE

*124 NI
125 RH0=RH0O*DEXP(((-A*EC)/H)*(l.DO.DCOS(E)))
126 YE=(1.DO+EC*DCOS(E))**(1.5)
127 YE=(YEDSORT(l.D0-EC*DCOS(E)))*RHO
128 XE=RHO*(1.DO.EC**2)*DCOS(E)
129 XE=XE*DS0R1C(1.OOEC*DCOs(E))/(1.DO.EC*DCOS(E)))
130 DA=(AK(j)*YE)+DA
131 DE=(AK(j)*XE)+DE
132 30 CONTINUE

*133 20 CONTINUE
134 10 CONTINUE
135 C234567
136 DA=.(A**2)*DELTA*(PI/4.DO)*DA
137 DE=.A*DELTA*(PI/4.DO)*DE
138 C234567
139 WRITE(*,100) DA,DE
140 WRITE(1,100) DA,DE

* -141 100 FORMAT(1X,'0etta semi major axis = ,F30.15,/,
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144

S '.." 142 1 Delta eccentricity ',F30.15)
143 C23567 ******************************************
144 STOP
145 END
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Avvendix Q: Det.ela 1 . Semi Maior Axis
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A~vendix H: Delta aDelta La 59m- Major Axis
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p-\pendix 1: Delta Delta L vs. S Major Axis for Various Lccentricitic'
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* App~endix J: Delta Deta * . Semi Mjajor A-xis for Various [ccentrk~ciie;
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-. \ppendix K: Delta Delta -,vs. Semi Nijor Axis for Various EccentricitieS
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FROZEN ORBIT ANALYSIS IN THE MARTIAN SYSTEM.
The purpose of this study is to determine where about Mars there may

A exist regions of orbital stabilities similar to those of the known polar
frozen orbits. Only perturbative effects due to a 6 X 6 gravity field
and atmospheric drag are considered. The geopotential equation is
developed for both spherical coordinates and the classical orbital
elements. An atmospheric model is also developed. The Fortran computer

model ASAP (Artificial Satellite Analysis Program) is validated for
accuracy, and used to perform a major portion of the analysis. Finally,
recommendations are made for future study.
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